Suppr超能文献

人工智能驱动的肿瘤学药物发现创新:变革传统流程并优化药物设计

Artificial Intelligence-Driven Innovations in Oncology Drug Discovery: Transforming Traditional Pipelines and Enhancing Drug Design.

作者信息

Albani Fatimah G, Alghamdi Sahar S, Almutairi Mohammed M, Alqahtani Tariq

机构信息

Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Al-Riyadh, Saudi Arabia.

Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

出版信息

Drug Des Devel Ther. 2025 Jul 3;19:5685-5707. doi: 10.2147/DDDT.S509769. eCollection 2025.

Abstract

The integration of artificial intelligence (AI) into oncology drug discovery is redefining the traditional pipeline by accelerating discovery, optimizing drug efficacy, and minimizing toxicity. AI has enabled groundbreaking advancements in molecular modeling, simulation techniques, and the identification of novel compounds, including anti-tumor and antibodies, while elucidating mechanisms of drug toxicity. Additionally, AI has emerged as a critical tool in precision medicine, driving the formulation and release of targeted therapies and improving the development of treatments for oncology and central nervous system diseases. Furthermore, AI-assisted clinical trial designs have further optimized the recruitment and stratification of patients, reducing the time and cost of trials. Despite these advancements, challenges such as data integration, transparency, and ethical considerations persist. By synthesizing current innovations, this manuscript provides a comprehensive analysis of AI-driven approaches in drug discovery and their potential to advance oncology therapeutics and precision medicine. It examines the transformative role of AI across the drug development continuum, with a focus on its applications in computer-aided drug design (CADD), generative artificial intelligence (GAI), and high-throughput screening (HTS).

摘要

将人工智能(AI)整合到肿瘤学药物研发中,正在通过加速发现、优化药物疗效和将毒性降至最低来重新定义传统流程。人工智能在分子建模、模拟技术以及新型化合物(包括抗肿瘤药物和抗体)的识别方面取得了突破性进展,同时阐明了药物毒性机制。此外,人工智能已成为精准医学中的关键工具,推动了靶向疗法的制定和发布,并改善了肿瘤学和中枢神经系统疾病治疗方法的开发。此外,人工智能辅助的临床试验设计进一步优化了患者招募和分层,减少了试验时间和成本。尽管取得了这些进展,但数据整合、透明度和伦理考量等挑战依然存在。通过综合当前的创新成果,本手稿对人工智能驱动的药物研发方法及其推进肿瘤治疗和精准医学的潜力进行了全面分析。它探讨了人工智能在药物开发连续过程中的变革性作用,重点关注其在计算机辅助药物设计(CADD)、生成式人工智能(GAI)和高通量筛选(HTS)中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74dd/12232943/93ef8dd3943a/DDDT-19-5685-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验