Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany; University of California San Diego, Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, United States.
Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany.
J Proteomics. 2019 May 15;199:31-50. doi: 10.1016/j.jprot.2019.02.004. Epub 2019 Feb 11.
We report on the variable venom composition of a population of the Caucasus viper (Vipera kaznakovi) in Northeastern Turkey. We applied a combination of venom gland transcriptomics, de-complexing bottom-up and top-down venomics. In contrast to sole bottom-up venomics approaches and gel or chromatography based venom comparison, our combined approach enables a faster and more detailed comparison of venom proteomes from multiple individuals. In total, we identified peptides and proteins from 15 toxin families, including snake venom metalloproteinases (svMP; 37.8%), phospholipases A (PLA; 19.0%), snake venom serine proteinases (svSP; 11.5%), C-type lectins (CTL; 6.9%) and cysteine-rich secretory proteins (CRISP; 5.0%), in addition to several low abundant toxin families. Furthermore, we identified intraspecies variations of the venom composition of V. kaznakovi, and find these were mainly driven by the age of the animals, with lower svSP abundance detected in juveniles. On the proteoform level, several small molecular weight toxins between 5 and 8 kDa in size, as well as PLAs, drove the differences observed between juvenile and adult individuals. This study provides novel insights into the venom variability of V. kaznakovi and highlights the utility of intact mass profiling for fast and detailed comparison of snake venom. BIOLOGICAL SIGNIFICANCE: Population level and ontogenetic venom variation (e.g. diet, habitat, sex or age) can result in a loss of antivenom efficacy against snakebites from wide ranging snake populations. The current state of the art for the analysis of snake venoms are de-complexing bottom-up proteomics approaches. While useful, these have the significant drawback of being time-consuming and following costly protocols, and consequently are often applied to pooled venom samples. To overcome these shortcomings and to enable rapid and detailed profiling of large numbers of individual venom samples, we integrated an intact protein analysis workflow into a transcriptomics-guided bottom-up approach. The application of this workflow to snake individuals of a local population of V. kaznakovi revealed intraspecies variations in venom composition, which are primarily explained by the age of the animals, and highlighted svSP abundance to be one of the molecular drivers for the compositional differences observed.
我们报告了在土耳其东北部的高加索蝮( Vipera kaznakovi )种群中,毒液组成存在可变性。我们应用了毒液腺转录组学、去复合物的自上而下和自下而上的毒液组学相结合的方法。与单一的自下而上的毒液组学方法以及基于凝胶或色谱的毒液比较相比,我们的组合方法能够更快、更详细地比较来自多个个体的毒液蛋白质组。总共,我们从 15 种毒素家族中鉴定出肽和蛋白质,包括蛇毒金属蛋白酶(svMP;37.8%)、磷脂酶 A(PLA;19.0%)、蛇毒丝氨酸蛋白酶(svSP;11.5%)、C 型凝集素(CTL;6.9%)和富含半胱氨酸的分泌蛋白(CRISP;5.0%),以及几种低丰度的毒素家族。此外,我们还鉴定出了 V. kaznakovi 毒液组成的种内变异,并且发现这些变异主要是由动物的年龄驱动的,在幼体中检测到的 svSP 丰度较低。在蛋白形式水平上,5 到 8 kDa 之间的几种小分子毒素以及 PLA 驱动了观察到的幼体和成年个体之间的差异。本研究为 V. kaznakovi 的毒液变异性提供了新的见解,并强调了完整质量谱分析在快速和详细比较蛇毒方面的效用。生物意义:种间水平和个体发育毒液变异(例如饮食、栖息地、性别或年龄)可能导致针对广泛分布的蛇种群的蛇咬伤的抗蛇毒血清疗效丧失。目前分析蛇毒液的技术是去复合物的自下而上的蛋白质组学方法。虽然这些方法很有用,但它们有一个耗时且昂贵的协议的显著缺点,因此通常应用于混合毒液样本。为了克服这些缺点,并能够快速和详细地分析大量个体毒液样本,我们将完整蛋白质分析工作流程集成到基于转录组学的自下而上的方法中。该工作流程在 V. kaznakovi 本地种群的蛇个体中的应用揭示了毒液组成的种内变异,这些变异主要由动物的年龄解释,并且强调了 svSP 丰度是观察到的组成差异的分子驱动之一。