Safont Gonzalo, Salazar Addisson, Vergara Luis
Universitat Politècnica de València, Instituto de Telecomunicaciones y Aplicaciones Multimedia, 46022 Valencia, Spain
Neural Comput. 2019 Apr;31(4):806-825. doi: 10.1162/neco_a_01169. Epub 2019 Feb 14.
Alpha integration methods have been used for integrating stochastic models and fusion in the context of detection (binary classification). Our work proposes separated score integration (SSI), a new method based on alpha integration to perform soft fusion of scores in multiclass classification problems, one of the most common problems in automatic classification. Theoretical derivation is presented to optimize the parameters of this method to achieve the least mean squared error (LMSE) or the minimum probability of error (MPE). The proposed alpha integration method was tested on several sets of simulated and real data. The first set of experiments used synthetic data to replicate a problem of automatic detection and classification of three types of ultrasonic pulses buried in noise (four-class classification). The second set of experiments analyzed two databases (one publicly available and one private) of real polysomnographic records from subjects with sleep disorders. These records were automatically staged in wake, rapid eye movement (REM) sleep, and non-REM sleep (three-class classification). Finally, the third set of experiments was performed on a publicly available database of single-channel real electroencephalographic data that included epileptic patients and healthy controls in five conditions (five-class classification). In all cases, alpha integration performed better than the considered single classifiers and classical fusion techniques.
阿尔法积分方法已被用于在检测(二元分类)的背景下对随机模型进行积分和融合。我们的工作提出了分离分数积分(SSI),这是一种基于阿尔法积分的新方法,用于在多类分类问题中对分数进行软融合,多类分类问题是自动分类中最常见的问题之一。本文给出了理论推导,以优化该方法的参数,从而实现最小均方误差(LMSE)或最小错误概率(MPE)。所提出的阿尔法积分方法在几组模拟数据和真实数据上进行了测试。第一组实验使用合成数据来重现一个在噪声中自动检测和分类三种类型超声脉冲的问题(四类分类)。第二组实验分析了两个来自患有睡眠障碍受试者的真实多导睡眠图记录数据库(一个是公开可用的,一个是私有的)。这些记录被自动划分为清醒、快速眼动(REM)睡眠和非REM睡眠(三类分类)。最后,第三组实验是在一个公开可用的单通道真实脑电图数据数据库上进行的,该数据库包括癫痫患者和处于五种状态的健康对照(五类分类)。在所有情况下,阿尔法积分的表现都优于所考虑的单个分类器和经典融合技术。