Suppr超能文献

转基因拟南芥中 SpSOS1 和 SpAHA1 的共表达提高了耐盐性。

Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance.

机构信息

Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.

Shandong Key Laboratory of Plant Stress/College of Life Science, Shandong Normal University, Jinan, 250014, China.

出版信息

BMC Plant Biol. 2019 Feb 14;19(1):74. doi: 10.1186/s12870-019-1680-7.

Abstract

BACKGROUND

Na extrusion from cells is important for plant growth in high saline environments. SOS1 (salt overly sensitive 1), an Na/H antiporter located in the plasma membrane (PM), functions in toxic Na extrusion from cells using energy from an electrochemical proton gradient produced by a PM-localized H-ATPase (AHA). Therefore, SOS1 and AHA are involved in plant adaption to salt stress.

RESULTS

In this study, the genes encoding SOS1 and AHA from the halophyte Sesuvium portulacastrum (SpSOS1 and SpAHA1, respectively) were introduced together or singly into Arabidopsis plants. The results indicated that either SpSOS1 or SpAHA1 conferred salt tolerance to transgenic plants and, as expected, Arabidopsis plants expressing both SpSOS1 and SpAHA1 grew better under salt stress than plants expressing only SpSOS1 or SpAHA1. In response to NaCl treatment, Na and H in the roots of plants transformed with SpSOS1 or SpAHA1 effluxed faster than wild-type (WT) plant roots. Furthermore, roots co-expressing SpSOS1 and SpAHA1 had higher Na and H efflux rates than single SpSOS1/SpAHA1-expressing transgenic plants, resulting in the former amassing less Na than the latter. As seen from comparative analyses of plants exposed to salinity stress, the malondialdehyde (MDA) content was lowest in the co-transgenic SpSOS1 and SpAHA1 plants, but the K level was the highest.

CONCLUSION

These results suggest SpSOS1 and SpAHA1 coordinate to alleviate salt toxicity by increasing the efficiency of Na extrusion to maintain K homeostasis and protect the PM from oxidative damage induced by salt stress.

摘要

背景

Na 从细胞中的排出对于高盐环境下的植物生长很重要。SOS1(盐敏感 1)是一种位于质膜(PM)中的 Na/H 反向转运体,它利用 PM 定位的 H-ATPase(AHA)产生的电化学质子梯度中的能量,将有毒的 Na 从细胞中排出。因此,SOS1 和 AHA 参与了植物对盐胁迫的适应。

结果

在这项研究中,将盐生植物马齿苋(Sesuvium portulacastrum)中的 SOS1 和 AHA 基因(分别为 SpSOS1 和 SpAHA1)一起或单独转入拟南芥植物中。结果表明,SpSOS1 或 SpAHA1 中的任何一个都赋予了转基因植物耐盐性,并且正如预期的那样,同时表达 SpSOS1 和 SpAHA1 的拟南芥植物在盐胁迫下的生长情况优于仅表达 SpSOS1 或 SpAHA1 的植物。在对 NaCl 处理的响应中,转化有 SpSOS1 或 SpAHA1 的植物根部 Na 和 H 的外排速度快于野生型(WT)植物根部。此外,共表达 SpSOS1 和 SpAHA1 的植物根部的 Na 和 H 外排率高于单独表达 SpSOS1/SpAHA1 的转基因植物,导致前者积累的 Na 比后者少。从对暴露于盐胁迫的植物的比较分析中可以看出,共转化的 SpSOS1 和 SpAHA1 植物中的丙二醛(MDA)含量最低,但 K 水平最高。

结论

这些结果表明,SpSOS1 和 SpAHA1 通过提高 Na 外排效率来协调减轻盐毒性,以维持 K 离子的体内平衡并保护质膜免受盐胁迫诱导的氧化损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验