Tasmanian Institute of Agriculture and School of Agricultural Sciences, University of Tasmania, Hobart, TAS 7001, Australia.
J Exp Bot. 2013 Jan;64(2):471-81. doi: 10.1093/jxb/ers343.
Reactive oxygen species (ROS) production is a common denominator in a variety of biotic and abiotic stresses, including salinity. In recent years, haem oxygenase (HO; EC 1.14.99.3) has been described as an important component of the antioxidant defence system in both mammalian and plant systems. Moreover, a recent report on Arabidopsis demonstrated that HO overexpression resulted in an enhanced salinity tolerance in this species. However, physiological mechanisms and downstream targets responsible for the observed salinity tolerance in these HO mutants remain elusive. To address this gap, ion transport characteristics (K(+) and H(+) fluxes and membrane potentials) and gene expression profiles in the roots of Arabidopsis thaliana HO-overexpressing (35S:HY1-1/2/3/4) and loss-of-function (hy-100, ho2, ho3, and ho4) mutants were compared during salinity stress. Upon acute salt stress, HO-overexpressing mutants retained more K(+) (less efflux), and exhibited better membrane potential regulation (maintained more negative potential) and higher H(+) efflux activity in root epidermis, compared with loss-of-function mutants. Pharmacological experiments suggested that high activity of the plasma membrane H(+)-ATPase in HO overexpressor mutants provided the proton-motive force required for membrane potential maintenance and, hence, better K(+) retention. The gene expression analysis after 12h and 24h of salt stress revealed high expression levels of H(+)-ATPases (AHA1/2/3) and Na(+)/H(+) antiporter [salt overly sensitive1 (SOS1)] transcripts in the plasma membrane of HO overexpressors. It is concluded that HO modifies salinity tolerance in Arabidopsis by controlling K(+) retention via regulation of the plasma membrane H(+)-ATPase and by altering SOS1 transcript levels in roots.
活性氧(ROS)的产生是生物和非生物胁迫(包括盐度)的共同特征。近年来,血红素加氧酶(HO;EC 1.14.99.3)已被描述为哺乳动物和植物系统中抗氧化防御系统的重要组成部分。此外,最近关于拟南芥的一份报告表明,HO 的过表达导致该物种对盐度胁迫的耐受性增强。然而,负责这些 HO 突变体观察到的盐度耐受性的生理机制和下游靶标仍然难以捉摸。为了解决这一差距,在盐胁迫期间,比较了拟南芥 HO 过表达(35S:HY1-1/2/3/4)和功能丧失(hy-100、ho2、ho3 和 ho4)突变体的根中的离子转运特性(K+和 H+通量和膜电位)和基因表达谱。在急性盐胁迫下,与功能丧失突变体相比,HO 过表达突变体保留了更多的 K+(流出较少),并且在根表皮中表现出更好的膜电位调节(保持更负的电位)和更高的 H+流出活性。药理学实验表明,HO 过表达突变体中质膜 H+-ATPase 的高活性提供了维持膜电位所需的质子动力,从而更好地保留 K+。盐胁迫 12h 和 24h 后的基因表达分析显示,HO 过表达体中质膜 H+-ATPase(AHA1/2/3)和 Na+/H+反向转运体[盐过度敏感 1(SOS1)]转录本的高表达水平。结论是,HO 通过调节质膜 H+-ATPase 控制 K+保留,以及通过改变根中的 SOS1 转录本水平,来改变拟南芥的耐盐性。