Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas-Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, C1428EGA Buenos Aires, Argentina.
Facultad de Ingeniería, Universidad Nacional de Entre Ríos, E3101 Entre Ríos, Argentina.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4037-4043. doi: 10.1073/pnas.1819859116. Epub 2019 Feb 14.
Conflicting biological goals often meet in the specification of protein sequences for structure and function. Overall, strong energetic conflicts are minimized in folded native states according to the principle of minimal frustration, so that a sequence can spontaneously fold, but local violations of this principle open up the possibility to encode the complex energy landscapes that are required for active biological functions. We survey the local energetic frustration patterns of all protein enzymes with known structures and experimentally annotated catalytic residues. In agreement with previous hypotheses, the catalytic sites themselves are often highly frustrated regardless of the protein oligomeric state, overall topology, and enzymatic class. At the same time a secondary shell of more weakly frustrated interactions surrounds the catalytic site itself. We evaluate the conservation of these energetic signatures in various family members of major enzyme classes, showing that local frustration is evolutionarily more conserved than the primary structure itself.
在蛋白质序列的结构和功能指定中,经常会遇到相互冲突的生物学目标。总的来说,根据最小挫折原则,在折叠的天然状态下,强烈的能量冲突被最小化,从而使序列可以自发折叠,但局部违反这一原则为编码活性生物功能所需的复杂能量景观开辟了可能性。我们调查了具有已知结构和实验注释催化残基的所有蛋白质酶的局部能量挫折模式。与先前的假设一致,无论蛋白质寡聚状态、整体拓扑结构和酶类如何,催化部位本身通常都受到高度挫折。同时,催化部位本身周围有一层较弱的能量相互作用的次要壳层。我们评估了这些能量特征在主要酶类的各种家族成员中的保守性,表明局部挫折比原始结构本身在进化上更保守。