Suppr超能文献

解读纽约市高血压药物治疗的不依从性:一种人群细分方法。

Decoding Nonadherence to Hypertensive Medication in New York City: A Population Segmentation Approach.

作者信息

Li Yan, Jasani Foram, Su Dejun, Zhang Donglan, Shi Lizheng, Yi Stella S, Pagán José A

机构信息

1 The New York Academy of Medicine, New York, NY, USA.

2 Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

J Prim Care Community Health. 2019 Jan-Dec;10:2150132719829311. doi: 10.1177/2150132719829311.

Abstract

OBJECTIVE

Nearly one-third of adults in New York City (NYC) have high blood pressure and many social, economic, and behavioral factors may influence nonadherence to antihypertensive medication. The objective of this study is to identify profiles of adults who are not taking antihypertensive medications despite being advised to do so.

METHODS

We used a machine learning-based population segmentation approach to identify population profiles related to nonadherence to antihypertensive medication. We used data from the 2016 NYC Community Health Survey to identify and segment adults into subgroups according to their level of nonadherence to antihypertensive medications.

RESULTS

We found that more than 10% of adults in NYC were not taking antihypertensive medications despite being advised to do so by their health care providers. We identified age, neighborhood poverty, diabetes, household income, health insurance coverage, and race/ethnicity as important characteristics that can be used to predict nonadherence behaviors as well as used to segment adults with hypertension into 10 subgroups.

CONCLUSIONS

Identifying segments of adults who do not adhere to hypertensive medications has practical implications as this knowledge can be used to develop targeted interventions to address this population health management challenge and reduce health disparities.

摘要

目的

纽约市近三分之一的成年人患有高血压,许多社会、经济和行为因素可能影响抗高血压药物的依从性。本研究的目的是确定尽管被建议服用抗高血压药物但仍未服用的成年人的特征。

方法

我们使用基于机器学习的人群细分方法来确定与抗高血压药物不依从相关的人群特征。我们使用2016年纽约市社区健康调查的数据,根据成年人对抗高血压药物的不依从程度将其识别并细分为亚组。

结果

我们发现,纽约市超过10%的成年人尽管被医疗保健提供者建议服用抗高血压药物,但仍未服用。我们确定年龄、邻里贫困、糖尿病、家庭收入、医疗保险覆盖范围和种族/族裔是可用于预测不依从行为的重要特征,也可用于将高血压成年人细分为10个亚组。

结论

识别不坚持服用高血压药物的成年人群具有实际意义,因为这些知识可用于制定有针对性的干预措施,以应对这一人群健康管理挑战并减少健康差距。

相似文献

1
Decoding Nonadherence to Hypertensive Medication in New York City: A Population Segmentation Approach.
J Prim Care Community Health. 2019 Jan-Dec;10:2150132719829311. doi: 10.1177/2150132719829311.
3
National Rates of Nonadherence to Antihypertensive Medications Among Insured Adults With Hypertension, 2015.
Hypertension. 2019 Dec;74(6):1324-1332. doi: 10.1161/HYPERTENSIONAHA.119.13616. Epub 2019 Nov 4.
5
Nonadherence to Antihypertensive Medication Among Hypertensive Adults in the United States─HealthStyles, 2010.
J Clin Hypertens (Greenwich). 2016 Sep;18(9):892-900. doi: 10.1111/jch.12786. Epub 2016 Feb 3.
6
Risk factors associated with antihypertensive medication nonadherence in a statewide Medicaid population.
Am J Med Sci. 2014 Nov;348(5):410-5. doi: 10.1097/MAJ.0b013e31825ce50f.
7
Impact of race on cumulative exposure to antihypertensive medications in dialysis.
Am J Hypertens. 2013 Feb;26(2):234-42. doi: 10.1093/ajh/hps019. Epub 2012 Dec 28.
9
Where you live can impact your cancer risk: a look at multiple myeloma in New York City.
Ann Epidemiol. 2020 Aug;48:43-50.e4. doi: 10.1016/j.annepidem.2020.05.005. Epub 2020 May 15.

引用本文的文献

2
Predicting medication wastage using machine learning based on patient beliefs.
Digit Health. 2025 Jul 13;11:20552076251355127. doi: 10.1177/20552076251355127. eCollection 2025 Jan-Dec.
3
Application of artificial intelligence in hypertension.
Clin Hypertens. 2024 May 1;30(1):11. doi: 10.1186/s40885-024-00266-9.
7
Artificial Intelligence and Hypertension: Recent Advances and Future Outlook.
Am J Hypertens. 2020 Nov 3;33(11):967-974. doi: 10.1093/ajh/hpaa102.

本文引用的文献

2
Who does not reduce their sodium intake despite being advised to do so? A population segmentation analysis.
Prev Med. 2017 Jun;99:77-79. doi: 10.1016/j.ypmed.2017.01.017. Epub 2017 Feb 9.
3
Patient Segmentation Analysis Offers Significant Benefits For Integrated Care And Support.
Health Aff (Millwood). 2016 May 1;35(5):769-75. doi: 10.1377/hlthaff.2015.1311.
4
Adherence to antihypertensive medications: is prescribing the right pill enough?
Nephrol Dial Transplant. 2015 Oct;30(10):1649-56. doi: 10.1093/ndt/gfu330. Epub 2014 Oct 21.
6
Characteristics of patients with primary non-adherence to medications for hypertension, diabetes, and lipid disorders.
J Gen Intern Med. 2012 Jan;27(1):57-64. doi: 10.1007/s11606-011-1829-z. Epub 2011 Aug 31.
7
Prevalence, awareness, treatment, and predictors of control of hypertension in New York City.
Circ Cardiovasc Qual Outcomes. 2008 Sep;1(1):46-53. doi: 10.1161/CIRCOUTCOMES.108.791954.
8
Methods to improve medication adherence in patients with hypertension: current status and future directions.
Curr Opin Cardiol. 2005 Jul;20(4):296-300. doi: 10.1097/01.hco.0000166597.52335.23.
9
Medication adherence: a key factor in achieving blood pressure control and good clinical outcomes in hypertensive patients.
Curr Opin Cardiol. 2004 Jul;19(4):357-62. doi: 10.1097/01.hco.0000126978.03828.9e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验