Suppr超能文献

放射治疗质量保证任务和工具:机器学习的多种角色。

Radiation Therapy Quality Assurance Tasks and Tools: The Many Roles of Machine Learning.

机构信息

Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA, 98195, USA.

出版信息

Med Phys. 2020 Jun;47(5):e168-e177. doi: 10.1002/mp.13445. Epub 2019 Mar 4.

Abstract

The recent explosion in machine learning efforts in the quality assurance (QA) space has produced a variety of proofs-of-concept many with promising results. Expected outcomes of model implementation include improvements in planning time, plan quality, advanced dosimetric QA, predictive machine maintenance, increased safety checks, and developments key for new QA paradigms driven by adaptive planning. In this article, we outline several areas of research and discuss some of the unique challenges each area presents.

摘要

最近,机器学习在质量保证(QA)领域的应用呈爆炸式增长,产生了各种概念验证,其中许多都取得了有希望的成果。模型实施的预期结果包括改进规划时间、计划质量、先进剂量学 QA、预测性机器维护、增加安全检查以及开发新的 QA 范式的关键,这些范式由自适应规划驱动。在本文中,我们概述了几个研究领域,并讨论了每个领域所提出的一些独特挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验