Suppr超能文献

使用多级门控模态融合模型进行容积调强弧形放疗的测量引导治疗剂量预测。

Measurement-guided therapeutic-dose prediction using multi-level gated modality-fusion model for volumetric-modulated arc radiotherapy.

作者信息

Gong Changfei, Huang Yuling, Jian Junming, Zheng Wenheng, Wang Xiaoping, Ding Shenggou, Zhang Yun

机构信息

Department of Radiation Oncology, Jianxi Center Hospital & Institute, Nanchang, Jiangxi, China.

Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi, China.

出版信息

Front Oncol. 2025 Mar 19;15:1468232. doi: 10.3389/fonc.2025.1468232. eCollection 2025.

Abstract

OBJECTIVES

Radiotherapy is a fundamental cancer treatment method, and pre-treatment patient-specific quality assurance (prePSQA) plays a crucial role in ensuring dose accuracy and patient safety. Artificial intelligence model for measurement-free prePSQA have been investigated over the last few years. While these models stack successive pooling layers to carry out sequential learning, directly splice together different modalities along channel dimensions and feed them into shared encoder-decoder network, which greatly reduces the anatomical features specific to different modalities. Furthermore, the existing models simply take advantage of low-dimensional dosimetry information, meaning that the spatial features about the complex dose distribution may be lost and limiting the predictive power of the models. The purpose of this study is to develop a novel deep learning model for measurement-guided therapeutic-dose (MDose) prediction from head and neck cancer radiotherapy data.

METHODS

The enrolled 310 patients underwent volumetric-modulated arc radiotherapy (VMAT) were randomly divided into the training set (186 cases, 60%), validation set (62 cases, 20%), and test set (62 cases, 20%). The effective prediction model explicitly integrates the multi-scale features that are specific to CT and dose images, takes into account the useful spatial dose information and fully exploits the mutual promotion within the different modalities. It enables medical physicists to analyze the detailed locations of spatial dose differences and to simultaneously generate clinically applicable dose-volume histograms (DVHs) metrics and gamma passing rate (GPR) outcomes.

RESULTS

The proposed model achieved better performance of MDose prediction, and dosimetric congruence of DVHs, GPR with the ground truth compared with several state-of-the-art models. Quantitative experimental predictions show that the proposed model achieved the lowest values for the mean absolute error (37.99) and root mean square error (4.916), and the highest values for the peak signal-to-noise ratio (52.622), structural similarity (0.986) and universal quality index (0.932). The predicted dose values of all voxels were within 6 Gy in the dose difference maps, except for the areas near the skin or thermoplastic mask indentation boundaries.

CONCLUSIONS

We have developed a feasible MDose prediction model that could potentially improve the efficiency and accuracy of prePSQA for head and neck cancer radiotherapy, providing a boost for clinical adaptive radiotherapy.

摘要

目的

放射治疗是一种基本的癌症治疗方法,治疗前针对患者的质量保证(prePSQA)在确保剂量准确性和患者安全方面起着至关重要的作用。在过去几年中,人们对用于无测量prePSQA的人工智能模型进行了研究。虽然这些模型堆叠连续的池化层来进行顺序学习,直接在通道维度上拼接不同模态并将它们输入到共享的编码器 - 解码器网络中,但这大大减少了不同模态特有的解剖特征。此外,现有模型只是简单地利用低维剂量学信息,这意味着关于复杂剂量分布的空间特征可能会丢失,从而限制了模型的预测能力。本研究的目的是从头颈癌放疗数据中开发一种用于测量引导治疗剂量(MDose)预测的新型深度学习模型。

方法

纳入的310例行容积调强弧形放疗(VMAT)的患者被随机分为训练集(186例,60%)、验证集(62例,20%)和测试集(62例,20%)。有效的预测模型明确整合了CT和剂量图像特有的多尺度特征,考虑了有用的空间剂量信息,并充分利用了不同模态之间的相互促进作用。它使医学物理学家能够分析空间剂量差异的详细位置,并同时生成临床适用的剂量体积直方图(DVH)指标和伽马通过率(GPR)结果。

结果

与几种最先进的模型相比,所提出的模型在MDose预测以及DVH、GPR与真实值的剂量学一致性方面表现更好。定量实验预测表明,所提出的模型在平均绝对误差(37.99)和均方根误差(4.916)方面达到最低值,在峰值信噪比(52.622)、结构相似性(0.986)和通用质量指数(0.932)方面达到最高值。在剂量差异图中,除了皮肤附近或热塑性面罩压痕边界附近的区域外,所有体素的预测剂量值在6 Gy以内。

结论

我们开发了一种可行的MDose预测模型,该模型有可能提高头颈癌放疗prePSQA的效率和准确性,为临床自适应放疗提供助力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bbb/11961879/dd2ec0a29f1c/fonc-15-1468232-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验