Suppr超能文献

原肌球蛋白相关的先天性肌病突变通过改变肌动蛋白亲和力和原肌球蛋白结合来破坏调节功能。

Congenital myopathy-related mutations in tropomyosin disrupt regulatory function through altered actin affinity and tropomodulin binding.

机构信息

Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Bydgoszcz, Poland.

Voiland School of Chemical Engineering and Bioengineering, University of Washington, Pullman, WA, USA.

出版信息

FEBS J. 2019 May;286(10):1877-1893. doi: 10.1111/febs.14787. Epub 2019 Mar 5.

Abstract

Tropomyosin (Tpm) binds along actin filaments and regulates myosin binding to control muscle contraction. Tropomodulin binds to the pointed end of a filament and regulates actin dynamics, which maintains the length of a thin filament. To define the structural determinants of these Tpm functions, we examined the effects of two congenital myopathy mutations, A4V and R91C, in the Tpm gene, TPM3, which encodes the Tpm3.12 isoform, specific for slow-twitch muscle fibers. Mutation A4V is located in the tropomodulin-binding, N-terminal region of Tpm3.12. R91C is located in the actin-binding period 3 and directly interacts with actin. The A4V and R91C mutations resulted in a 2.5-fold reduced affinity of Tpm3.12 homodimers for F-actin in the absence and presence of troponin, and a two-fold decrease in actomyosin ATPase activation in the presence of Ca . Actomyosin ATPase inhibition in the absence of Ca was not affected. The Ca sensitivity of ATPase activity was decreased by R91C, but not by A4V. In vitro, R91C altered the ability of tropomodulin 1 (Tmod1) to inhibit actin polymerization at the pointed end of the filaments, which correlated with the reduced affinity of Tpm3.12-R91C for Tmod1. Molecular dynamics simulations of Tpm3.12 in complex with F-actin suggested that both mutations reduce the affinity of Tpm3.12 for F-actin binding by perturbing the van der Waals energy, which may be attributable to two different molecular mechanisms-a reduced flexibility of Tpm3.12-R91C and an increased flexibility of Tpm3.12-A4V.

摘要

原肌球蛋白(Tropomyosin,Tpm)结合于肌动蛋白丝上,并调节肌球蛋白与肌动蛋白的结合,以控制肌肉收缩。原肌球蛋白结合于纤维丝的尖端,并调节肌动蛋白的动态,从而维持细丝的长度。为了明确这些 Tpm 功能的结构决定因素,我们检测了 TPM3 基因中的两个先天性肌病突变(A4V 和 R91C)的影响,TPM3 基因编码的 Tpm3.12 同工型特异性存在于慢肌纤维中。A4V 突变位于 Tpm3.12 的原肌球蛋白结合、N 端区域。R91C 位于肌动蛋白结合周期 3 并直接与肌动蛋白相互作用。A4V 和 R91C 突变导致 Tpm3.12 同源二聚体在缺乏和存在肌钙蛋白的情况下与 F-肌动蛋白的亲和力降低了 2.5 倍,并且在存在 Ca2+的情况下肌球蛋白 ATP 酶的激活降低了 2 倍。在缺乏 Ca2+的情况下,肌球蛋白 ATP 酶的抑制没有受到影响。R91C 降低了 ATP 酶活性的 Ca 敏感性,但 A4V 没有。在体外,R91C 改变了肌动蛋白聚合在纤维丝尖端的抑制能力,这与 Tpm3.12-R91C 与 Tmod1 的亲和力降低有关。Tpm3.12 与 F-肌动蛋白结合的分子动力学模拟表明,两种突变都通过扰乱范德华能降低了 Tpm3.12 与 F-肌动蛋白结合的亲和力,这可能归因于两种不同的分子机制-Tpm3.12-R91C 的灵活性降低和 Tpm3.12-A4V 的灵活性增加。

相似文献

引用本文的文献

本文引用的文献

4
Functional effects of substitutions I92T and V95A in actin-binding period 3 of tropomyosin.原肌球蛋白肌动蛋白结合结构域3中I92T和V95A替换的功能效应
Biochim Biophys Acta Proteins Proteom. 2018 Apr;1866(4):558-568. doi: 10.1016/j.bbapap.2018.02.004. Epub 2018 Feb 26.
9
Thin Filament Structure and the Steric Blocking Model.细肌丝结构与空间位阻模型。
Compr Physiol. 2016 Mar 15;6(2):1043-69. doi: 10.1002/cphy.c150030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验