Weill Cornell Medicine, New York, NY, United States.
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
Biochem Pharmacol. 2019 May;163:493-508. doi: 10.1016/j.bcp.2019.02.013. Epub 2019 Feb 13.
In models of neuropathic pain, inhibition of HCN1 is anti-hyperalgesic. 2,6-di-iso-propyl phenol (propofol) and its non-anesthetic congener, 2,6-di-tert-butyl phenol, inhibit HCN1 channels by stabilizing closed state(s).
Using in vitro electrophysiology and kinetic modeling, we systematically explore the contribution of ligand architecture to alkylphenol-channel coupling.
When corrected for changes in hydrophobicity (and propensity for intra-membrane partitioning), the decrease in potency upon 1-position substitution (NCO∼OH >> SH >>> F) mirrors the ligands' H-bond acceptor (NCO > OH > SH >>> F) but not donor profile (OH > SH >>> NCO∼F). H-bond elimination (OH to F) corresponds to a ΔΔG of ∼4.5 kCal mol loss of potency with little or no disruption of efficacy. Substitution of compact alkyl groups (iso-propyl, tert-butyl) with shorter (ethyl, methyl) or more extended (sec-butyl) adducts disrupts both potency and efficacy. Ring saturation (with the obligate loss of both planarity and π electrons) primarily disrupts efficacy.
A hydrophobicity-independent decrement in potency at higher volumes suggests the alkylbenzene site has a volume of ≥800 Å. Within this, a relatively static (with respect to ligand) H-bond donor contributes to initial binding with little involvement in generation of coupling energy. The influence of π electrons/ring planarity and alkyl adducts on efficacy reveals these aspects of the ligand present towards a face of the channel that undergoes structural changes during opening. The site's characteristics suggest it is "druggable"; introduction of other adducts on the ring may generate higher potency inverse agonists.
在神经病理性疼痛模型中,抑制 HCN1 可抗痛觉过敏。2,6-二异丙基苯酚(丙泊酚)及其非麻醉性同系物 2,6-二叔丁基苯酚通过稳定关闭状态来抑制 HCN1 通道。
我们使用体外电生理学和动力学模型系统地研究了配体结构对烷基苯酚通道偶联的贡献。
当校正疏水性变化(和跨膜分配倾向)时,1-位取代(NCO∼OH >> SH >>> F)导致效力降低的程度反映了配体的氢键受体(NCO > OH > SH >>> F),而不是供体特征(OH > SH >>> NCO∼F)。氢键消除(OH 至 F)对应于效力降低约 4.5 kCal/mol,几乎没有或没有破坏功效。用较短的(乙基、甲基)或更扩展的(仲丁基)加合物取代紧凑的烷基(异丙基、叔丁基)会破坏效力和功效。环饱和(平面性和π电子的强制丧失)主要破坏功效。
在较高体积下,效力的非依赖性降低表明烷基苯位点的体积≥800 Å。在这个范围内,相对静态(相对于配体)的氢键供体有助于初始结合,很少参与产生偶联能量。π电子/环平面性和烷基加合物对功效的影响揭示了配体在通道开口过程中结构变化的一个面的这些方面。该位点的特征表明它是“可药用的”;在环上引入其他加合物可能会产生更高效力的反向激动剂。