Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
Nat Commun. 2024 Jun 18;15(1):5216. doi: 10.1038/s41467-024-49599-x.
Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.
超极化和环核苷酸 (HCN) 激活离子通道对于人体起搏和节律性电回路中动作电位的自动性至关重要。与大多数电压门控离子通道不同,HCN 及相关植物离子通道在膜超极化时激活。尽管功能研究已经确定了电压感应和孔域之间界面上的残基对于反向机电耦接至关重要,但这种不寻常的电压依赖性的结构机制仍不清楚。在这里,我们展示了对应于关闭、开放和假定中间状态的人源 HCN1 的冷冻电镜结构。我们的结构揭示了门控电荷经过电荷转移中心的向下运动伴随着 S4 和 S5 螺旋内端的同时解旋,破坏了在关闭状态结构中观察到的紧密门控界面。这种细胞内门控界面的螺旋-线圈转变伴随着孔螺旋的协调虹膜样扩张,并构成了 HCN 通道反向电压依赖性的基础。