Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria.
Molecules. 2019 Feb 14;24(4):681. doi: 10.3390/molecules24040681.
Indirect (S)QM/MM free energy simulations (FES) are vital to efficiently incorporating sufficient sampling and accurate (QM) energetic evaluations when estimating free energies of practical/experimental interest. Connecting between levels of theory, i.e., calculating Δ A l o w → h i g h , remains to be the most challenging step within an indirect FES protocol. To improve calculations of Δ A l o w → h i g h , we must: (1) compare the performance of all FES methods currently available; and (2) compile and maintain datasets of Δ A l o w → h i g h calculated for a wide-variety of molecules so that future practitioners may replicate or improve upon the current state-of-the-art. Towards these two aims, we introduce a new dataset, "HiPen", which tabulates Δ A g a s M M → 3 o b (the free energy associated with switching from an M M to an S C C - D F T B molecular description using the 3 parameter set in gas phase), calculated for 22 drug-like small molecules. We compare the calculation of this value using free energy perturbation, Bennett's acceptance ratio, Jarzynski's equation, and Crooks' equation. We also predict the reliability of each calculated Δ A g a s M M → 3 o b by evaluating several convergence criteria including sample size hysteresis, overlap statistics, and bias metric ( Π ). Within the total dataset, three distinct categories of molecules emerge: the "good" molecules, for which we can obtain converged Δ A g a s M M → 3 o b using Jarzynski's equation; "bad" molecules which require Crooks' equation to obtain a converged Δ A g a s M M → 3 o b ; and "ugly" molecules for which we cannot obtain reliably converged Δ A g a s M M → 3 o b with either Jarzynski's or Crooks' equations. We discuss, in depth, results from several example molecules in each of these categories and describe how dihedral discrepancies between levels of theory cause convergence failures even for these gas phase free energy simulations.
间接(S)QM/MM 自由能模拟(FES)对于在估计实际/实验感兴趣的自由能时有效地进行充分采样和准确(QM)能量评估至关重要。在理论水平之间建立联系,即计算ΔA low→high,仍然是间接 FES 协议中最具挑战性的步骤。为了改进ΔA low→high 的计算,我们必须:(1)比较当前可用的所有 FES 方法的性能;(2)编译和维护为各种分子计算的ΔA low→high 的数据集,以便未来的从业者可以复制或改进当前的最先进水平。为了实现这两个目标,我们引入了一个新的数据集“HiPen”,其中列出了ΔA gas MM→3ob(从 MM 切换到 S C C - D F T B 分子描述时在气相中使用 3 参数集所涉及的自由能),为 22 种类似药物的小分子计算。我们比较了使用自由能微扰、贝内特接受率、雅金斯基方程和克罗克斯方程计算此值的方法。我们还通过评估几个收敛标准,包括样本大小滞后、重叠统计和偏差度量(Π),来预测每个计算的ΔA gas MM→3ob 的可靠性。在整个数据集内,出现了三种不同类别的分子:“良好”分子,对于这些分子,我们可以使用雅金斯基方程获得收敛的ΔA gas MM→3ob;“不良”分子,需要使用克罗克斯方程才能获得收敛的ΔA gas MM→3ob;以及“丑陋”分子,对于这些分子,我们无法使用雅金斯基或克罗克斯方程可靠地获得收敛的ΔA gas MM→3ob。我们深入讨论了每个类别中的几个示例分子的结果,并描述了理论水平之间的二面角差异如何导致即使在这些气相自由能模拟中也会出现收敛失败。