Suppr超能文献

基于犹豫模糊熵的无线传感器网络新数据融合算法。

A New Data Fusion Algorithm for Wireless Sensor Networks Inspired by Hesitant Fuzzy Entropy.

机构信息

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA.

出版信息

Sensors (Basel). 2019 Feb 14;19(4):784. doi: 10.3390/s19040784.

Abstract

The wireless sensor network (WSN) is mainly composed of a large number of sensor nodes that are equipped with limited energy and resources. Therefore, energy consumption in wireless sensor networks is one of the most challenging problems in practice. On the other hand, data fusion can effectively decrease data redundancy, reduce the amount of data transmission and energy consumption in the network, extend the network life cycle, improve the utilization of bandwidth, and thus overcome the bottleneck on energy and bandwidth consumption. This paper proposes a new data fusion algorithm based on Hesitant Fuzzy Entropy (DFHFE). The new algorithm aims to reduce the collection of repeated data on sensor nodes from the source, and strives to utilize the information provided by redundant data to improve the data reliability. Hesitant fuzzy entropy is exploited to fuse the original data from sensor nodes in the cluster at the sink node to obtain higher quality data and make local decisions on the events of interest. The sink nodes periodically send local decisions to the base station that aggregates the local decisions and makes the final judgment, in which process the burden for the base station to process all the data is significantly released. According to our experiments, the proposed data fusion algorithm greatly improves the robustness, accuracy, and real-time performance of the entire network. The simulation results demonstrate that the new algorithm is more efficient than the state-of-the-art in terms of both energy consumption and real-time performance.

摘要

无线传感器网络(WSN)主要由大量配备有限能量和资源的传感器节点组成。因此,无线传感器网络中的能量消耗是实践中最具挑战性的问题之一。另一方面,数据融合可以有效地减少数据冗余,减少网络中数据传输和能量消耗的数量,延长网络生命周期,提高带宽利用率,从而克服能量和带宽消耗的瓶颈。本文提出了一种基于犹豫模糊熵(DFHFE)的新数据融合算法。新算法旨在减少源传感器节点上重复数据的采集,并努力利用冗余数据提供的信息来提高数据可靠性。犹豫模糊熵用于融合汇聚节点处来自传感器节点的原始数据,以获得更高质量的数据,并对感兴趣的事件做出本地决策。汇聚节点定期将本地决策发送到基站,基站对本地决策进行聚合并做出最终判断,从而大大减轻了基站处理所有数据的负担。根据我们的实验,所提出的数据融合算法大大提高了整个网络的鲁棒性、准确性和实时性。仿真结果表明,新算法在能量消耗和实时性方面均优于现有算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f1d/6412561/11a19994f11e/sensors-19-00784-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验