Suppr超能文献

基于犹豫模糊熵的异构无线传感器网络机会式聚类与数据融合算法。

Hesitant Fuzzy Entropy-Based Opportunistic Clustering and Data Fusion Algorithm for Heterogeneous Wireless Sensor Networks.

机构信息

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

Satellite Control Facility (SCF-L) directorate, SE&T wing, Space & Upper Atmosphere Research Commission, Lahore 54000, Pakistan.

出版信息

Sensors (Basel). 2020 Feb 8;20(3):913. doi: 10.3390/s20030913.

Abstract

Limited energy resources of sensor nodes in Wireless Sensor Networks (WSNs) make energy consumption the most significant problem in practice. This paper proposes a novel, dynamic, self-organizing Hesitant Fuzzy Entropy-based Opportunistic Clustering and data fusion Scheme (HFECS) in order to overcome the energy consumption and network lifetime bottlenecks. The asynchronous working-sleeping cycle of sensor nodes could be exploited to make an opportunistic connection between sensor nodes in heterogeneous clustering. HFECS incorporates two levels of hierarchy in the network and energy heterogeneity is characterized using three levels of energy in sensor nodes. HFECS gathers local sensory data from sensor nodes and utilizes multi-attribute decision modeling and the entropy weight coefficient method for cluster formation and the cluster head election procedure. After cluster formation, HFECS uses the same techniques for performing data fusion at the first hierarchical level to reduce the redundant information flow from the first-second hierarchical levels, which can lead to an improvement in energy consumption, better utilization of bandwidth and extension of network lifetime. Our simulation results reveal that HFECS outperforms the existing benchmark schemes of heterogeneous clustering for larger network sizes in terms of half-life period, stability period, average residual energy, network lifetime, and packet delivery ratio.

摘要

传感器节点在无线传感器网络(WSNs)中的有限能量资源使得能量消耗成为实践中的最大问题。本文提出了一种新颖的、动态的、自组织的犹豫模糊熵机会聚类和数据融合方案(HFECS),以克服能量消耗和网络生命周期的瓶颈。可以利用传感器节点的异步工作-休眠周期在异构聚类中实现传感器节点之间的机会连接。HFECS 在网络中采用两级分层结构,利用传感器节点中的三个能量级别来描述能量异质性。HFECS 从传感器节点中收集本地感应数据,并利用多属性决策建模和熵权系数方法进行聚类形成和簇头选举过程。聚类形成后,HFECS 在第一级层次结构中使用相同的技术进行数据融合,以减少来自第一二级层次结构的冗余信息流,从而提高能量消耗、更好地利用带宽和延长网络生命周期。我们的仿真结果表明,HFECS 在更大的网络规模下,在半生命期、稳定期、平均剩余能量、网络寿命和分组投递率方面优于现有的异构聚类基准方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验