Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Electrical and Computer Engineering, Instituto Superior Técnico, Lisbon, Portugal.
Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
Neuron. 2019 Apr 3;102(1):249-259.e4. doi: 10.1016/j.neuron.2019.01.026. Epub 2019 Feb 12.
Most brain functions involve interactions among multiple, distinct areas or nuclei. For instance, visual processing in primates requires the appropriate relaying of signals across many distinct cortical areas. Yet our understanding of how populations of neurons in interconnected brain areas communicate is in its infancy. Here we investigate how trial-to-trial fluctuations of population responses in primary visual cortex (V1) are related to simultaneously recorded population responses in area V2. Using dimensionality reduction methods, we find that V1-V2 interactions occur through a communication subspace: V2 fluctuations are related to a small subset of V1 population activity patterns, distinct from the largest fluctuations shared among neurons within V1. In contrast, interactions between subpopulations within V1 are less selective. We propose that the communication subspace may be a general, population-level mechanism by which activity can be selectively routed across brain areas.
大多数脑功能都涉及多个不同区域或核团之间的相互作用。例如,灵长类动物的视觉处理需要在许多不同的皮质区域之间进行适当的信号传递。然而,我们对相互连接的脑区中神经元群体如何进行通信的理解还处于起步阶段。在这里,我们研究了初级视觉皮层(V1)中群体反应的逐次波动与同时记录的 V2 区群体反应之间的关系。使用降维方法,我们发现 V1-V2 相互作用是通过一个通信子空间发生的:V2 的波动与 V1 群体活动模式的一小部分相关,与 V1 内神经元之间共享的最大波动不同。相比之下,V1 内亚群之间的相互作用选择性较低。我们提出,通信子空间可能是一种普遍的、基于群体的机制,通过这种机制,活动可以在大脑区域之间有选择地传递。