School of Chemistry, Beijing Advanced Innovation Center, for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, P.R. China.
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center, for Nanoscience and Technology, Beijing, 100190, P.R. China.
Chemistry. 2019 Apr 11;25(21):5480-5488. doi: 10.1002/chem.201805370. Epub 2019 Mar 19.
A comprehensive study unveiling the impact of heterovalent doping with Bi on the structural, semiconductive, and photoluminescent properties of a single crystal of lead halide perovskites (CH NH PbBr ) is presented. As indicated by single-crystal XRD, a perfect cubic structure in Bi -doped CH NH PbBr crystals is maintained in association with a slight lattice contraction. Time-resolved and power-dependent photoluminescence (PL) spectroscopy illustrates a progressively quenched PL of visible emission, alongside the appearance of a new PL signal in the near-infrared (NIR) regime, which is likely to be due to energy transfer to the Bi sites. These optical characteristics indicate the role of Bi dopants as nonradiative recombination centers, which explains the observed transition from bimolecular recombination in pristine CH NH PbBr to a dominant trap-assisted monomolecular recombination with Bi doping. Electrically, it is found that the mobility in pristine perovskite crystals can be boosted with a low Bi concentration, which may be related to a trap-filling mechanism. Aided by temperature (T)-dependent measurements, two temperature regimes are observed in association with different activation energies (E ) for electrical conductivity. The reduction of E at lower T may be ascribed to suppression of ionic conduction induced by doping. The modified electrical properties and NIR emission with the control of Bi concentration shed light on the opportunity to apply heterovalent doping of perovskite single crystals for NIR optoelectronic applications.
本研究全面揭示了 Bi 杂化对卤化铅钙钛矿单晶的结构、半导体和光致发光性能的影响。单晶 XRD 表明,Bi 掺杂 CH3NH3PbBr3晶体保持了完美的立方结构,同时晶格略有收缩。时间分辨和功率依赖的光致发光(PL)光谱表明,可见发射的 PL 逐渐猝灭,同时在近红外(NIR)区域出现新的 PL 信号,这可能归因于能量转移到 Bi 位。这些光学特性表明 Bi 掺杂剂作为非辐射复合中心的作用,这解释了观察到的从原始 CH3NH3PbBr3中的双分子复合到具有 Bi 掺杂的主要陷阱辅助单分子复合的转变。在电学方面,发现原始钙钛矿晶体中的迁移率可以通过低浓度的 Bi 来提高,这可能与陷阱填充机制有关。通过温度(T)依赖性测量,观察到与电导率不同激活能(E)相关的两个温度区域。在较低温度下 E 的降低可能归因于掺杂引起的离子传导的抑制。通过控制 Bi 浓度来改变电性能和 NIR 发射,为应用钙钛矿单晶的杂化掺杂进行近红外光电应用提供了机会。