Suppr超能文献

载有三碘甲状腺原氨酸的肽修饰取向纳米纤维的神经再生的策略设计。

Strategic design of peptide-decorated aligned nanofibers impregnated with triiodothyronine for neural regeneration.

机构信息

Biological Materials Laboratory, CSIR - Central Leather Research Institute, Chennai, India.

出版信息

J Tissue Eng Regen Med. 2019 May;13(5):753-770. doi: 10.1002/term.2822. Epub 2019 Apr 8.

Abstract

Nerve injuries are often debilitating as its regeneration occurs in a slow and laborious manner. Remediation of nerve injury is a colossal task as functional restoration in larger gaps seldom occurs due to the complex nerve regeneration mechanism. A nanofiber-based graft material has been fabricated to provide topographical and biochemical cues to encourage neural differentiation. Laminin plays a crucial role in supporting peripheral nerve regeneration and hence aligned polyvinyl cinnamate nanofibers surface-conjugated with laminin-derived cell-adhesion peptides have been fabricated to improve selective neural adhesion and regeneration. Further, triiodothyronine has been encapsulated within the nanofibers enabling its sustained release so as to bolster regeneration and reinstate the lost functionality to the damaged nerve. The fabricated nanofibers were characterized for its physicochemical, morphological, and topographical properties. Nanofibers were biocompatible, improved cell adhesion rate, and illustrated favourable interaction with cells. Gene expression (showed 9.5 and 4.1 fold increase in β-tubulin and MAP 2 expression, respectively) and protein expression (immunofluorescence, flow cytometry, and western blot) studies confirmed the positive influence of the scaffold over cell differentiation. The studies were extrapolated to adult zebrafish model with a surgical incision in posterior lateral line. The biocomposite treated group showed earlier functional restoration of the nerve compared with control groups detected by touch-evoked response. Thus, the combination of aligned nanofibers providing topographical cue, along with the peptides and triiodothyronine serving as biochemical cues, has a robust potential to restore functionality to the injured nerve, thereby opening avenues for fabrication of regenerative nerve grafts.

摘要

神经损伤通常会使人衰弱,因为其再生过程非常缓慢且费力。神经损伤的修复是一项艰巨的任务,因为较大间隙的功能恢复很少发生,这是由于复杂的神经再生机制所致。已经制造了一种基于纳米纤维的移植物材料,以提供地形和生化线索,以鼓励神经分化。层粘连蛋白在支持周围神经再生方面起着至关重要的作用,因此制造了与层粘连蛋白衍生的细胞黏附肽表面偶联的取向聚醋酸乙烯肉桂酸纳米纤维,以改善选择性神经黏附和再生。此外,三碘甲状腺原氨酸已被封装在纳米纤维内,以实现其持续释放,从而促进再生并恢复受损神经的丧失功能。已经对制造的纳米纤维进行了理化、形态和形貌特性的表征。纳米纤维具有生物相容性,可提高细胞黏附率,并与细胞表现出良好的相互作用。基因表达(β-微管蛋白和 MAP2 表达分别增加了 9.5 倍和 4.1 倍)和蛋白质表达(免疫荧光、流式细胞术和 Western blot)研究证实了支架对细胞分化的积极影响。这些研究被外推到成年斑马鱼模型,在后侧线进行了手术切口。通过触摸诱发反应检测到,与对照组相比,生物复合材料处理组的神经功能更早得到恢复。因此,提供地形线索的取向纳米纤维与作为生化线索的肽和三碘甲状腺原氨酸的结合,具有恢复受损神经功能的强大潜力,从而为再生神经移植物的制造开辟了途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验