Suppr超能文献

基于增强 CT 的术前影像组学Nomogram 模型预测肝细胞癌微血管侵犯

Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT.

机构信息

Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, People's Republic of China.

出版信息

Eur Radiol. 2019 Jul;29(7):3595-3605. doi: 10.1007/s00330-018-5985-y. Epub 2019 Feb 15.

Abstract

OBJECTIVES

To develop and validate a radiomics nomogram for preoperative prediction of microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC).

METHODS

The study included 157 patients with histologically confirmed HCC with or without MVI, and 110 patients were allocated to the training dataset and 47 to the validation dataset. Baseline clinical factor (CF) data were collected from our medical records, and radiomics features were extracted from the artery phase (AP), portal venous phase (PVP) and delay phase (DP) of preoperatively acquired CT in all patients. Radiomics analysis included tumour segmentation, feature extraction, model construction and model evaluation. A final nomogram for predicting MVI of HCC was established. Nomogram performance was assessed via both calibration and discrimination statistics.

RESULTS

Five AP features, seven PVP features and nine DP features were effective for MVI prediction in HCC radiomics signatures. PVP radiomics signatures exhibited better performance than AP and DP radiomics signatures in the validation datasets, with the AUC 0.793. In the clinical model, age, maximum tumour diameter, alpha-fetoprotein and hepatitis B antigen were effective predictors. The final nomogram integrated the PVP radiomics signature and four CFs. Good calibration was achieved for the nomogram in both the training and validated datasets, with respective C-indexes of 0.827 and 0.820. Decision curve analysis suggested that the proposed nomogram was clinically useful, with a corresponding net benefit of 0.357.

CONCLUSIONS

The above-described radiomics nomogram can preoperatively predict MVI in patients with HCC and may constitute a usefully clinical tool to guide subsequent personalised treatment.

KEY POINTS

• No previously reported study has utilised radiomics nomograms to preoperatively predict the MVI of HCC using 3D contrast-enhanced CT imaging. • The combined radiomics clinical factor (CF) nomogram for predicting MVI achieved superior performance than either the radiomics signature or the CF nomogram alone. • Nomograms combing PVP radiomics and CF may be useful as an imaging marker for predicting MVI of HCC preoperatively and could guide personalised treatment.

摘要

目的

开发并验证一种用于预测肝细胞癌(HCC)患者微血管侵犯(MVI)的放射组学列线图。

方法

本研究纳入了 157 例经组织学证实的 HCC 患者,其中包括伴或不伴 MVI 的患者。110 例患者被分配到训练数据集,47 例患者被分配到验证数据集。从我们的病历中收集了基线临床因素(CF)数据,并对所有患者的动脉期(AP)、门静脉期(PVP)和延迟期(DP)的术前 CT 图像进行了放射组学特征提取。放射组学分析包括肿瘤分割、特征提取、模型构建和模型评估。最终建立了一个用于预测 HCC MVI 的列线图。通过校准和区分统计评估了列线图的性能。

结果

在 HCC 放射组学特征中,AP 有 5 个特征,PVP 有 7 个特征,DP 有 9 个特征可有效预测 MVI。在验证数据集,PVP 放射组学特征在预测 HCC 的 MVI 方面表现优于 AP 和 DP 放射组学特征,其 AUC 为 0.793。在临床模型中,年龄、最大肿瘤直径、甲胎蛋白和乙肝抗原是有效的预测因子。最终的列线图整合了 PVP 放射组学特征和 4 个 CF。该列线图在训练集和验证集均有较好的校准,各自的 C 指数为 0.827 和 0.820。决策曲线分析表明,所提出的列线图具有临床应用价值,对应的净收益为 0.357。

结论

上述放射组学列线图可术前预测 HCC 患者的 MVI,可能成为指导后续个体化治疗的有用临床工具。

关键点

  • 没有先前的研究使用 3D 对比增强 CT 成像的放射组学列线图来术前预测 HCC 的 MVI。

  • 用于预测 MVI 的放射组学临床因素(CF)列线图的性能优于放射组学特征或 CF 列线图单独使用。

  • 结合 PVP 放射组学和 CF 的列线图可能可作为术前预测 HCC 患者 MVI 的影像学标志物,并可指导个体化治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验