Bakr Shaimaa, Echegaray Sebastian, Shah Rajesh, Kamaya Aya, Louie John, Napel Sandy, Kothary Nishita, Gevaert Olivier
Stanford University, Department of Electrical Engineering, Stanford, California, United States.
Stanford University, Department of Radiology, James H. Clark Center, Stanford, California, United States.
J Med Imaging (Bellingham). 2017 Oct;4(4):041303. doi: 10.1117/1.JMI.4.4.041303. Epub 2017 Aug 21.
We explore noninvasive biomarkers of microvascular invasion (mVI) in patients with hepatocellular carcinoma (HCC) using quantitative and semantic image features extracted from contrast-enhanced, triphasic computed tomography (CT). Under institutional review board approval, we selected 28 treatment-naive HCC patients who underwent surgical resection. Four radiologists independently selected and delineated tumor margins on three axial CT images and extracted computational features capturing tumor shape, image intensities, and texture. We also computed two types of "delta features," defined as the absolute difference and the ratio computed from all pairs of imaging phases for each feature. 717 arterial, portal-venous, delayed single-phase, and delta-phase features were robust against interreader variability ([Formula: see text]). An enhanced cross-validation analysis showed that combining robust single-phase and delta features in the arterial and venous phases identified mVI (AUC [Formula: see text]). Compared to a previously reported semantic feature signature (AUC 0.47 to 0.58), these features in our cohort showed only slight to moderate agreement (Cohen's kappa range: 0.03 to 0.59). Though preliminary, quantitative analysis of image features in arterial and venous phases may be potential surrogate biomarkers for mVI in HCC. Further study in a larger cohort is warranted.
我们利用从对比增强三相计算机断层扫描(CT)中提取的定量和语义图像特征,探索肝细胞癌(HCC)患者微血管侵犯(mVI)的非侵入性生物标志物。在机构审查委员会批准下,我们选择了28例未经治疗的接受手术切除的HCC患者。四名放射科医生在三张轴向CT图像上独立选择并勾勒出肿瘤边缘,并提取了捕捉肿瘤形状、图像强度和纹理的计算特征。我们还计算了两种类型的“增量特征”,定义为每个特征在所有成像阶段对之间计算的绝对差值和比值。717个动脉期、门静脉期、延迟单相期和增量期特征对阅片者间的变异性具有鲁棒性([公式:见原文])。增强的交叉验证分析表明,将动脉期和静脉期的鲁棒单相特征和增量特征相结合可识别mVI(AUC [公式:见原文])。与先前报道的语义特征标记(AUC为0.47至0.58)相比,我们队列中的这些特征仅显示出轻微至中度的一致性(Cohen's kappa范围:0.03至0.59)。尽管是初步研究,但对动脉期和静脉期图像特征的定量分析可能是HCC中mVI的潜在替代生物标志物。有必要在更大的队列中进行进一步研究。