Suppr超能文献

基于计算机断层扫描图像定量分析的非侵入性放射组学特征作为肝细胞癌微血管侵犯替代指标的初步研究

Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study.

作者信息

Bakr Shaimaa, Echegaray Sebastian, Shah Rajesh, Kamaya Aya, Louie John, Napel Sandy, Kothary Nishita, Gevaert Olivier

机构信息

Stanford University, Department of Electrical Engineering, Stanford, California, United States.

Stanford University, Department of Radiology, James H. Clark Center, Stanford, California, United States.

出版信息

J Med Imaging (Bellingham). 2017 Oct;4(4):041303. doi: 10.1117/1.JMI.4.4.041303. Epub 2017 Aug 21.

Abstract

We explore noninvasive biomarkers of microvascular invasion (mVI) in patients with hepatocellular carcinoma (HCC) using quantitative and semantic image features extracted from contrast-enhanced, triphasic computed tomography (CT). Under institutional review board approval, we selected 28 treatment-naive HCC patients who underwent surgical resection. Four radiologists independently selected and delineated tumor margins on three axial CT images and extracted computational features capturing tumor shape, image intensities, and texture. We also computed two types of "delta features," defined as the absolute difference and the ratio computed from all pairs of imaging phases for each feature. 717 arterial, portal-venous, delayed single-phase, and delta-phase features were robust against interreader variability ([Formula: see text]). An enhanced cross-validation analysis showed that combining robust single-phase and delta features in the arterial and venous phases identified mVI (AUC [Formula: see text]). Compared to a previously reported semantic feature signature (AUC 0.47 to 0.58), these features in our cohort showed only slight to moderate agreement (Cohen's kappa range: 0.03 to 0.59). Though preliminary, quantitative analysis of image features in arterial and venous phases may be potential surrogate biomarkers for mVI in HCC. Further study in a larger cohort is warranted.

摘要

我们利用从对比增强三相计算机断层扫描(CT)中提取的定量和语义图像特征,探索肝细胞癌(HCC)患者微血管侵犯(mVI)的非侵入性生物标志物。在机构审查委员会批准下,我们选择了28例未经治疗的接受手术切除的HCC患者。四名放射科医生在三张轴向CT图像上独立选择并勾勒出肿瘤边缘,并提取了捕捉肿瘤形状、图像强度和纹理的计算特征。我们还计算了两种类型的“增量特征”,定义为每个特征在所有成像阶段对之间计算的绝对差值和比值。717个动脉期、门静脉期、延迟单相期和增量期特征对阅片者间的变异性具有鲁棒性([公式:见原文])。增强的交叉验证分析表明,将动脉期和静脉期的鲁棒单相特征和增量特征相结合可识别mVI(AUC [公式:见原文])。与先前报道的语义特征标记(AUC为0.47至0.58)相比,我们队列中的这些特征仅显示出轻微至中度的一致性(Cohen's kappa范围:0.03至0.59)。尽管是初步研究,但对动脉期和静脉期图像特征的定量分析可能是HCC中mVI的潜在替代生物标志物。有必要在更大的队列中进行进一步研究。

相似文献

引用本文的文献

本文引用的文献

7
Radiomics: Images Are More than Pictures, They Are Data.放射组学:图像不止是图片,它们是数据。
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验