Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States.
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States.
J Colloid Interface Sci. 2019 Apr 15;542:370-378. doi: 10.1016/j.jcis.2019.02.021. Epub 2019 Feb 7.
Microfluidic reactors represent a new frontier in the rational design and controllable synthesis of functional micro-/nanomaterials. Herein, we develop a continuous and ultrafast flow synthesis method to obtain triangular silver (tAg) nanoplatelet using a short range two-loop spiral-shaped laminar flow microfluidic reactor, with one inlet flow containing AgNO, trisodium citrate, and HO and the other NaBH. The effect of the reactant concentration and flow rate on the structural changes of tAg is examined. Through the same miniaturized microreactor, hierarchical core-shell Ag@SiO can be produced with tunable silica shell thickness using one inlet flow containing the as-synthesized Ag nanoparticles together with tetraethyl orthosilicate and the other ammonia. The enhanced cellular internalization efficiency of triangular nanoplatelets by PANC-1 and MCF-7 cells is further confirmed in comparison with the spherical ones. These results not only bring new insights for engineering nanomaterials from microreactors but also facilitate the rational design of functional nanostructures for enhancing their biological performance.
微流控反应器代表了合理设计和可控合成功能微/纳米材料的新前沿。在此,我们开发了一种连续超快流动合成方法,使用短程双环螺旋层流微流控反应器获得三角银(tAg)纳米薄片,其中一个入口流包含 AgNO3、柠檬酸钠和 H2O,另一个入口流包含 NaBH4。考察了反应物浓度和流速对 tAg 结构变化的影响。通过相同的小型微反应器,使用一个入口流包含合成的 Ag 纳米粒子以及正硅酸乙酯和另一个氨,可以生产具有可调硅壳厚度的分级核壳 Ag@SiO2。与球形纳米粒子相比,进一步证实了三角纳米薄片在 PANC-1 和 MCF-7 细胞中的增强细胞内化效率。这些结果不仅为从微反应器中工程化纳米材料带来了新的见解,也为合理设计增强其生物性能的功能纳米结构提供了便利。