Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA.
Biomater Sci. 2018 Nov 20;6(12):3121-3125. doi: 10.1039/c8bm00851e.
The emergence of microfluidic techniques provides new opportunities for chemical synthesis and biomedical applications. Herein, we first develop a microfluidics-based flow and sustainable strategy to synthesize hierarchical silica-magnetic microflower with unique multilayered structure for the efficient capture of circulating tumor cells through our engineered microfluidic screening chip. The production of microflower materials can be realized within 94 milliseconds and a yield of nearly 5 grams per hour can be achieved. The enhanced bioaccessibility of such a multilayered microflower towards cancer cells (MCF-7 and MDA-MB-231) is demonstrated, and the cancer cell capture efficiency of this hierarchical immunomagnetic system in clinical blood samples is significantly increased compared with a standard CellSearch™ assay. These findings bring new insights for engineering functional micro-/nanomaterials in liquid biopsy.
微流控技术的出现为化学合成和生物医学应用提供了新的机会。在此,我们首先开发了一种基于微流控的流动和可持续策略,用于合成具有独特多层结构的分级硅-磁性微花,通过我们设计的微流控筛选芯片高效捕获循环肿瘤细胞。微花材料的生产可以在 94 毫秒内实现,每小时的产量可以达到近 5 克。这种多层微花对癌细胞(MCF-7 和 MDA-MB-231)的生物可及性增强得到了证明,与标准的 CellSearch™检测相比,这种分级免疫磁系统在临床血液样本中的癌细胞捕获效率显著提高。这些发现为液体活检中功能性微/纳材料的工程提供了新的见解。