Department of Chemistry, Jadavpur University, Kolkata 700 032, India; Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
Department of Chemistry, Jadavpur University, Kolkata 700 032, India; Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
J Colloid Interface Sci. 2017 Apr 1;491:349-357. doi: 10.1016/j.jcis.2016.12.052. Epub 2016 Dec 24.
Gold Nanomaterials (GNMs) interact with fluorophores via electromagnetic coupling under excitation. In this particular work we carried out (to the best of our knowledge for the first time) a comprehensive study of systematic quenching of a blue emitter 2-Anthracene Sulfonate (2-AS) in the presence of gold nanoparticles of different size and shape. We synthesized gold nanomaterials of four different dimensions [nanoparticle (0D), nanorod (1D), nanotriangle (2D) and nanobipyramids (3D)] and realized the underlying effect on the emitting dipole in terms of steady and time resolved fluorescence. Nanometal Surface Energy Transfer (NSET) has already been proved to be the best long range spectroscopic ruler so far. Many attempts have been made to understand the interaction between a fluorescent molecule and gold nanomaterials. But not a single model can interpret alone the interaction phenomena. We have opted three different models to compare the experimental and theoretical data. Due to the presence of size dependent absorptivity and dielectric function, modified CPS-Kuhn model was proved to be the worthiest to comprehend variance of behavior of an emitting dipole in close proximity to nanometal surface by coupling with the image dipole of gold nanomaterials.
金纳米材料(GNMs)在激发下通过电磁偶联与荧光团相互作用。在这项特殊的工作中,我们首次进行了一项关于不同尺寸和形状的金纳米粒子存在下蓝色荧光团 2-蒽磺酸盐(2-AS)系统猝灭的综合研究。我们合成了四种不同维度的金纳米材料[纳米颗粒(0D)、纳米棒(1D)、纳米三角形(2D)和纳米双锥(3D)],并根据稳态和时间分辨荧光实现了对发射偶极子的潜在影响。纳米金属表面能量转移(NSET)已被证明是迄今为止最好的远程光谱标尺。人们已经尝试了很多次来理解荧光分子与金纳米材料之间的相互作用。但是,没有一个单一的模型可以单独解释相互作用现象。我们选择了三种不同的模型来比较实验和理论数据。由于存在尺寸相关的吸光度和介电函数,经过修正的 CPS-Kuhn 模型被证明是最值得的,因为它通过与金纳米材料的镜像偶极子耦合,可以理解在靠近纳米金属表面的情况下,发射偶极子的行为变化。