Suppr超能文献

基于统计模型和机器学习技术的陕西省气象干旱预测。

Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China.

机构信息

State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.

State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.

出版信息

Sci Total Environ. 2019 May 15;665:338-346. doi: 10.1016/j.scitotenv.2019.01.431. Epub 2019 Feb 10.

Abstract

BACKGROUND

Drought is a major natural disaster that causes severe social and economic losses. The prediction of regional droughts may provide important information for drought preparedness and farm irrigation. The existing drought prediction models are mainly based on a single weather station. Efforts need to be taken to develop a new multistation-based prediction model.

OBJECTIVES

This study optimizes the predictor selection process and develops a new model to predict droughts using past drought index, meteorological measures and climate signals from 32 stations during 1961 to 2016 in Shaanxi province, China.

METHODS

We applied and compared two methods, including a cross-correlation function and a distributed lag nonlinear model (DLNM), in selecting the optimal predictors and specifying their lag time. Then, we built a DLNM, an artificial neural network model and an XGBoost model and compared their validations for predicting the Standardized Precipitation Evapotranspiration Index (SPEI) 1-6 months in advance.

RESULTS

The DLNM was better than the cross-correlation function in predictor selection and lag effect determination. The XGBoost model more accurately predicted SPEI with a lead time of 1-6 months than the DLNM and the artificial neural network, with cross-validation R values of 0.68-0.82, 0.72-0.89, 0.81-0.92, and 0.84-0.95 at 3-, 6-, 9- and 12-month time scales, respectively. Moreover, the XGBoost model had the highest prediction accuracy for overall droughts (89%-97%) and for three specific drought categories (i.e., moderate, severe, and extreme) (76%-94%).

CONCLUSION

This study offers a new modeling strategy for drought predictions based on multistation data. The incorporation of nonlinear and lag effects of predictors into the XGBoost method can significantly improve prediction accuracy of SPEI and drought.

摘要

背景

干旱是一种主要的自然灾害,会造成严重的社会和经济损失。区域性干旱的预测可以为干旱准备和农田灌溉提供重要信息。现有的干旱预测模型主要基于单个气象站。需要努力开发新的多站基础预测模型。

目的

本研究优化了预测因子选择过程,并使用过去的干旱指数、气象措施和 1961 年至 2016 年中国陕西省 32 个站的气候信号,开发了一种新的模型来预测干旱。

方法

我们应用并比较了两种方法,包括互相关函数和分布式滞后非线性模型(DLNM),用于选择最佳预测因子并指定其滞后时间。然后,我们构建了一个 DLNM、一个人工神经网络模型和一个 XGBoost 模型,并比较了它们对提前 1-6 个月预测标准化降水蒸散指数(SPEI)的验证。

结果

DLNM 在预测因子选择和滞后效应确定方面优于互相关函数。XGBoost 模型比 DLNM 和人工神经网络更准确地预测 SPEI,提前 1-6 个月,交叉验证 R 值分别为 0.68-0.82、0.72-0.89、0.81-0.92 和 0.84-0.95,在 3、6、9 和 12 个月的时间尺度上。此外,XGBoost 模型对整体干旱(89%-97%)和三个特定干旱类别(即中度、重度和极端干旱)(76%-94%)的预测准确率最高。

结论

本研究为基于多站数据的干旱预测提供了一种新的建模策略。将预测因子的非线性和滞后效应纳入 XGBoost 方法可以显著提高 SPEI 和干旱的预测精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验