Seo Young-Ho, Sung Jang Hyun, Kim Byung-Sik, Park Junehyeong
Environmental Technology Research Institute, Kangwon National University, Samcheok-si, 25913, Republic of Korea.
Department of Urban and Environmental Disaster Prevention Engineering, Kangwon National University, Samcheok-si, 25913, Republic of Korea.
Sci Rep. 2025 May 30;15(1):18987. doi: 10.1038/s41598-025-01464-7.
Artificial Intelligence (AI) has been extensively utilized for streamflow prediction, primarily in gauged watersheds using meteorological and historical streamflow data. However, its application in data-limited regions requires innovative approaches due to the reliance on extensive monitoring data. Physically based models, while comprehensive, are labor-intensive and inherently uncertain. Our study leveraged AI to address these limitations, focusing on direct streamflow drought estimation using statistical threshold levels without a physically based model. Models were developed and tested using inflow data and meteorological variables from four major South Korean dams. The Threshold Level Method (TLM) was applied to daily inflow data to define drought events, creating a time series for model training. We utilized the XGBoost algorithm, integrating comprehensive meteorological data to enhance the accuracy and reliability of the drought predictions. Our findings show that AI models can effectively identify and forecast streamflow droughts, even with limited streamflow data, by using meteorological inputs. The results demonstrated significant drought patterns and characteristics across different threshold levels and time resolutions. This application provides a robust framework for integrating advanced AI techniques in hydrological studies, offering practical insights into water resource management and drought planning, particularly in semi-gauged basins where baseline data is available but limited.
人工智能(AI)已被广泛用于径流预测,主要是在使用气象和历史径流数据的有测量数据的流域。然而,由于依赖大量监测数据,其在数据有限地区的应用需要创新方法。基于物理的模型虽然全面,但劳动强度大且固有地存在不确定性。我们的研究利用人工智能来解决这些局限性,重点是在不使用基于物理的模型的情况下,使用统计阈值水平直接进行径流干旱估计。使用来自韩国四座主要大坝的入流数据和气象变量开发并测试了模型。阈值水平法(TLM)应用于每日入流数据以定义干旱事件,从而创建用于模型训练的时间序列。我们利用XGBoost算法,整合综合气象数据以提高干旱预测的准确性和可靠性。我们的研究结果表明,人工智能模型即使在径流数据有限的情况下,也可以通过使用气象输入有效地识别和预测径流干旱。结果显示了不同阈值水平和时间分辨率下显著的干旱模式和特征。该应用为在水文研究中整合先进的人工智能技术提供了一个强大的框架,为水资源管理和干旱规划提供了实际见解,特别是在有基线数据但有限的半测量流域。