Suppr超能文献

中国抗生素滥用的分层自举分割模型。

Split bootstrap hierarchical modeling of antibiotics abuse in China.

机构信息

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona.

Mary Lou Fulton Teachers College, Arizona State University, Tempe, Arizona.

出版信息

Stat Med. 2019 May 30;38(12):2282-2291. doi: 10.1002/sim.8118. Epub 2019 Feb 18.

Abstract

In the 1990s, China experienced a high degree of antibiotics abuse, which resulted in increased drug resistance. As a result, the World Health Organization introduced a program for children under the age of 5 years who had an acute respiratory tract infection. We analyze the data pertaining to the treatment provided by doctors in several hospitals in China in order to understand the relationships in the data. The data are nested in a three-level hierarchical structure with small cluster sizes ranging from 2 to 10. While large sample theory provides a mechanism to construct confidence intervals and test hypotheses about regression coefficients, the estimation algorithms often fail to converge when they are applied to small cluster sizes. This paper presents a combination of the cluster bootstrap and primary unit splitting methods, called split bootstrap, which is a novel combination that can be used as an alternative when analyzing data pertaining to the abuse of antibiotics in China with small cluster sizes. The split bootstrap method provides accurate estimations with a minimal reduction in precision.

摘要

20 世纪 90 年代,中国经历了高度的抗生素滥用,导致耐药性增加。因此,世界卫生组织为 5 岁以下患有急性呼吸道感染的儿童推出了一个项目。我们分析了中国几家医院医生提供的治疗数据,以了解数据中的关系。这些数据嵌套在一个三级层次结构中,小簇大小从 2 到 10 不等。虽然大样本理论提供了一种构建置信区间和检验回归系数假设的机制,但当应用于小簇大小时,估计算法往往无法收敛。本文提出了一种组合聚类引导和主单元分裂方法的方法,称为分裂引导,这是一种新颖的组合,可以作为分析中国抗生素滥用的小簇大小数据的替代方法。分裂引导方法提供了准确的估计,精度损失最小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验