Suppr超能文献

宫颈癌中的PD-1/PD-L1抑制剂

PD-1/PD-L1 Inhibitors in Cervical Cancer.

作者信息

Liu Yuncong, Wu Li, Tong Ruizhan, Yang Feiyue, Yin Limei, Li Mengqian, You Liting, Xue Jianxin, Lu You

机构信息

West China School of Medicine, Sichuan University, Chengdu, China.

Department of Gynaecological Oncology, Guizhou Provincial People's Hospital, Guiyang, China.

出版信息

Front Pharmacol. 2019 Feb 1;10:65. doi: 10.3389/fphar.2019.00065. eCollection 2019.

Abstract

Cervical cancer is one of the most common gynecological tumors, and the majority of early-stage cervical cancer patients achieve good recovery through surgical treatment and concurrent chemoradiotherapy (CCRT). However, for patients with recurrent, persistent, metastatic cervical cancer, effective treatment is rare, except for bevacizumab combined with chemotherapy. Programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) inhibitors might be a novel choice to improve the clinical outcomes of these patients. Thus far, some pivotal trials, including Keynote 028, Keynote 158 and Checkmate 358, have indicated established clinical benefit of PD-1/PD-L1 inhibitors in cervical cancer. In light of these data, the FDA has approved pembrolizumab for patients with recurrent or metastatic cervical cancer with disease progression during or after chemotherapy. There are also some ongoing studies that may provide more evidence for the PD-1/PD-L1 pathway as a therapeutic target in cervical cancer. In this review, we have summarized the status and application of PD-1/PD-L1 inhibitors in clinical trials for the treatment of cervical cancer and suggested some future directions in this field.

摘要

宫颈癌是最常见的妇科肿瘤之一,大多数早期宫颈癌患者通过手术治疗和同步放化疗(CCRT)可实现良好康复。然而,对于复发、持续性、转移性宫颈癌患者,除了贝伐单抗联合化疗外,有效的治疗方法很少。程序性细胞死亡蛋白1/程序性细胞死亡配体1(PD-1/PD-L1)抑制剂可能是改善这些患者临床结局的新选择。迄今为止,包括Keynote 028、Keynote 158和Checkmate 358在内的一些关键试验表明,PD-1/PD-L1抑制剂在宫颈癌中具有已确立的确切临床获益。鉴于这些数据,美国食品药品监督管理局(FDA)已批准帕博利珠单抗用于治疗化疗期间或化疗后疾病进展的复发或转移性宫颈癌患者。也有一些正在进行的研究可能会为将PD-1/PD-L1通路作为宫颈癌的治疗靶点提供更多证据。在本综述中,我们总结了PD-1/PD-L1抑制剂在宫颈癌治疗临床试验中的现状和应用,并提出了该领域未来的一些方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da1a/6367228/fc26f769209b/fphar-10-00065-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验