Lovat Giacomo, Doud Evan A, Lu Deyu, Kladnik Gregor, Inkpen Michael S, Steigerwald Michael L, Cvetko Dean, Hybertsen Mark S, Morgante Alberto, Roy Xavier, Venkataraman Latha
Department of Applied Physics and Applied Mathematics , Columbia University , New York , New York 10027 , USA . Email:
Department of Chemistry , Columbia University , New York , New York 10027 , USA . Email:
Chem Sci. 2018 Nov 5;10(3):930-935. doi: 10.1039/c8sc03502d. eCollection 2019 Jan 21.
N-heterocyclic carbenes (NHCs) bind very strongly to transition metals due to their unique electronic structure featuring a divalent carbon atom with a lone pair in a highly directional sp-hybridized orbital. As such, they can be assembled into monolayers on metal surfaces that have enhanced stability compared to their thiol-based counterparts. The utility of NHCs to form such robust self-assembled monolayers (SAMs) was only recently recognized and many fundamental questions remain. Here we investigate the structure and geometry of a series of NHCs on Au(111) using high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. We find that the N-substituents on the NHC ring strongly affect the molecule-metal interaction and steer the orientation of molecules in the surface layer. In contrast to previous reports, our experimental and theoretical results provide unequivocal evidence that NHCs with N-methyl substituents bind to undercoordinated adatoms to form flat-lying complexes. In these SAMs, the donor-acceptor interaction between the NHC lone pair and the undercoordinated Au adatom is primarily responsible for the strong bonding of the molecules to the surface. NHCs with bulkier N-substituents prevent the formation of such complexes by forcing the molecules into an upright orientation. Our work provides unique insights into the bonding and geometry of NHC monolayers; more generally, it charts a clear path to manipulating the interaction between NHCs and metal surfaces using traditional coordination chemistry synthetic strategies.
N-杂环卡宾(NHCs)由于其独特的电子结构,即一个二价碳原子在高度定向的sp杂化轨道中带有孤对电子,因而能与过渡金属强烈结合。因此,它们可以在金属表面组装成单分子层,与基于硫醇的同类物相比,具有更高的稳定性。NHCs形成这种坚固的自组装单分子层(SAMs)的效用直到最近才被认识到,许多基本问题仍然存在。在这里,我们使用高分辨率X射线光电子能谱和密度泛函理论计算来研究一系列NHCs在Au(111)上的结构和几何形状。我们发现,NHC环上的N-取代基强烈影响分子与金属的相互作用,并控制表面层中分子的取向。与之前的报道不同,我们的实验和理论结果提供了明确的证据,即带有N-甲基取代基的NHCs与低配位的吸附原子结合形成平躺配合物。在这些SAMs中,NHC孤对电子与低配位Au吸附原子之间的供体-受体相互作用是分子与表面强烈结合的主要原因。带有更大体积N-取代基的NHCs通过迫使分子直立取向来阻止这种配合物的形成。我们的工作为NHC单分子层的键合和几何形状提供了独特的见解;更普遍地说,它为使用传统配位化学合成策略来操纵NHCs与金属表面之间的相互作用指明了一条清晰的道路。