Rohling Roderigh Y, Tranca Ionut C, Hensen Emiel J M, Pidko Evgeny A
Inorganic Materials Chemistry group, Department of Chemical Engineering, and Energy Technology, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
ACS Catal. 2019 Jan 4;9(1):376-391. doi: 10.1021/acscatal.8b03482. Epub 2018 Nov 27.
The Diels-Alder cycloaddition (DAC) is a powerful tool to construct C-C bonds. The DAC reaction can be accelerated in several ways, one of which is reactant confinement as observed in supramolecular complexes and Diels-Alderases. Another method is altering the frontier molecular orbitals (FMOs) of the reactants by using homogeneous transition-metal complexes whose active sites exhibit d-orbitals suitable for net-bonding orbital interactions with the substrates. Both features can be combined in first row d-block (TM) exchanged faujasite catalysts where the zeolite framework acts as a stabilizing ligand for the active site while confining the reactants. Herein, we report on a mechanistic and periodic DFT study on TM-(Cu(I), Cu(II), Zn(II), Ni(II), Cr(III), Sc(III), V(V))exchanged faujasites to elucidate the effect of d-shell filling on the DAC reaction between 2,5-dimethylfuran and ethylene. Two pathways were found: one being the concerted one-step and the other being the stepwise two-step pathway. A decrease in d-shell filling results in a concomitant increase in reactant activation as evidenced by increasingly narrow energy gaps and lower activation barriers. For models holding relatively small d-block cations, the zeolite framework was found to bias the DAC reaction toward an asynchronous one-step pathway instead of the two-step pathway. This work is an example of how the active site properties and the surrounding chemical environment influence the reaction mechanism of chemical transformations.
狄尔斯-阿尔德环加成反应(DAC)是构建碳-碳键的有力工具。DAC反应可以通过多种方式加速,其中之一是在超分子配合物和狄尔斯-阿尔德酶中观察到的反应物受限。另一种方法是使用均相过渡金属配合物来改变反应物的前线分子轨道(FMO),其活性位点表现出适合与底物进行净键轨道相互作用的d轨道。这两个特征可以在第一行d族(TM)交换的八面沸石催化剂中结合起来,其中沸石骨架作为活性位点的稳定配体,同时限制反应物。在此,我们报告了一项关于TM-(Cu(I)、Cu(II)、Zn(II)、Ni(II)、Cr(III)、Sc(III)、V(V))交换八面沸石的机理和周期性密度泛函理论研究,以阐明d壳层填充对2,5-二甲基呋喃与乙烯之间DAC反应的影响。发现了两条途径:一条是协同一步途径,另一条是分步两步途径。d壳层填充的减少导致反应物活化的相应增加,这由越来越窄的能隙和更低的活化能垒证明。对于含有相对较小d族阳离子的模型,发现沸石骨架使DAC反应倾向于异步一步途径而不是两步途径。这项工作是活性位点性质和周围化学环境如何影响化学转化反应机理的一个例子。