Rohling Roderigh Y, Tranca Ionut C, Hensen Emiel J M, Pidko Evgeny A
Inorganic Materials Chemistry Group, Department of Chemical Engineering, and Energy Technology, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
J Phys Chem C Nanomater Interfaces. 2019 Feb 7;123(5):2843-2854. doi: 10.1021/acs.jpcc.8b08934. Epub 2019 Jan 7.
Quantum chemistry-based codes and methods provide valuable computational tools to estimate reaction energetics and elucidate reaction mechanisms. Electronic structure methods allow directly studying the chemical transformations in molecular systems involving breaking and making of chemical bonds and the associated changes in the electronic structure. The link between the electronic structure and chemical bonding can be provided through the crystal orbital Hamilton population (COHP) analysis that allows quantifying the bond strength by computing Hamilton-weighted populations of localized atomic orbitals. Another important parameter reflecting the nature and strength of a chemical bond is the bond order that can be assessed by the density derived electrostatic and chemical (DDEC6) method which relies on an electron and spin density-partitioning scheme. Herein, we describe a linear correlation that can be established between the DDEC6-derived bond orders and the bond strengths computed with the COHP formalism. We demonstrate that within defined boundaries, the COHP-derived bond strengths can be consistently compared among each other and linked to the DDEC6-derived bond orders independent of the used model. The validity of these correlations and the effective model independence of the electronic descriptors are demonstrated for a variety of gas-phase chemical systems, featuring different types of chemical bonds. Furthermore, the applicability of the derived correlations to the description of complex reaction paths in periodic systems is demonstrated by considering the zeolite-catalyzed Diels-Alder cycloaddition reaction between 2,5-dimethylfuran and ethylene.
基于量子化学的代码和方法提供了有价值的计算工具,用于估算反应能量学并阐明反应机理。电子结构方法允许直接研究分子系统中的化学转化,包括化学键的断裂和形成以及电子结构的相关变化。电子结构与化学键之间的联系可以通过晶体轨道哈密顿布居(COHP)分析来提供,该分析通过计算局域原子轨道的哈密顿加权布居来量化键强度。另一个反映化学键性质和强度的重要参数是键级,它可以通过基于电子和自旋密度划分方案的密度衍生静电和化学(DDEC6)方法来评估。在此,我们描述了一种可以在DDEC6衍生的键级与用COHP形式计算的键强度之间建立的线性相关性。我们证明,在定义的边界内,基于COHP的键强度可以相互一致地比较,并与DDEC6衍生的键级相关联,而与所使用的模型无关。对于各种具有不同类型化学键的气相化学系统,证明了这些相关性的有效性以及电子描述符的有效模型独立性。此外,通过考虑2,5-二甲基呋喃与乙烯之间的沸石催化狄尔斯-阿尔德环加成反应,证明了所推导的相关性在描述周期性系统中复杂反应路径方面的适用性。