Suppr超能文献

技不如人,却更接近目标。

Getting closer to the goal by being less capable.

机构信息

Physics Department, University of Miami, Coral Gables, FL 33126, USA.

College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China.

出版信息

Sci Adv. 2019 Feb 6;5(2):eaau5902. doi: 10.1126/sciadv.aau5902. eCollection 2019 Feb.

Abstract

Understanding how systems with many semi-autonomous parts reach a desired target is a key question in biology (e.g., larvae seeking food), engineering (e.g., driverless navigation), medicine (e.g., reliable movement for brain-damaged individuals), and socioeconomics (e.g., bottom-up goal-driven human organizations). Centralized systems perform better with better components. Here, we show, by contrast, that a decentralized entity is more efficient at reaching a target when its components are less capable. Our findings reproduce experimental results for a living organism, predict that autonomous vehicles may perform better with simpler components, offer a fresh explanation for why biological evolution jumped from decentralized to centralized design, suggest how efficient movement might be achieved despite damaged centralized function, and provide a formula predicting the optimum capability of a system's components so that it comes as close as possible to its target or goal.

摘要

理解具有许多半自主部分的系统如何达到期望的目标是生物学(例如,幼虫寻找食物)、工程学(例如,无人驾驶导航)、医学(例如,脑损伤患者的可靠运动)和社会经济学(例如,自下而上的目标驱动的人类组织)中的一个关键问题。集中式系统具有更好的组件,其性能会更好。相比之下,我们通过对比表明,当组成部分的能力较低时,分散式实体更能有效地达到目标。我们的研究结果再现了生物体的实验结果,预测了自动驾驶汽车的组件越简单,其性能可能越好,为生物进化为何从分散式设计跳跃到集中式设计提供了新的解释,为尽管中枢功能受损但仍能实现高效运动提供了思路,并提供了一个预测系统组件最佳能力的公式,以便其尽可能接近目标或目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb3/6365121/0f1ca305f27d/aau5902-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验