Suppr超能文献

变分瓦瑟斯坦聚类

Variational Wasserstein Clustering.

作者信息

Mi Liang, Zhang Wen, Gu Xianfeng, Wang Yalin

机构信息

Arizona State University, Tempe, USA.

Stony Brook University, Stony Brook, USA.

出版信息

Comput Vis ECCV. 2018 Sep;11219:336-352. doi: 10.1007/978-3-030-01267-0_20. Epub 2018 Oct 7.

Abstract

We propose a new clustering method based on optimal transportation. We discuss the connection between optimal transportation and k-means clustering, solve optimal transportation with the variational principle, and investigate the use of power diagrams as transportation plans for aggregating arbitrary domains into a fixed number of clusters. We drive cluster centroids through the target domain while maintaining the minimum clustering energy by adjusting the power diagram. Thus, we simultaneously pursue clustering and the Wasserstein distance between the centroids and the target domain, resulting in a measure-preserving mapping. We demonstrate the use of our method in domain adaptation, remeshing, and learning representations on synthetic and real data.

摘要

我们提出了一种基于最优传输的新聚类方法。我们讨论了最优传输与k均值聚类之间的联系,用变分原理求解最优传输,并研究了使用幂图作为传输计划,将任意域聚合成固定数量的簇。我们在目标域中驱动聚类中心,同时通过调整幂图来保持最小聚类能量。因此,我们同时追求聚类以及聚类中心与目标域之间的瓦瑟斯坦距离,从而得到一个测度保持映射。我们展示了我们的方法在域适应、重新网格化以及在合成数据和真实数据上学习表示方面的应用。

相似文献

1
Variational Wasserstein Clustering.变分瓦瑟斯坦聚类
Comput Vis ECCV. 2018 Sep;11219:336-352. doi: 10.1007/978-3-030-01267-0_20. Epub 2018 Oct 7.
2
Regularized Wasserstein Means for Aligning Distributional Data.用于对齐分布数据的正则化瓦瑟斯坦均值
Proc AAAI Conf Artif Intell. 2020;34(4):5166-5173. doi: 10.1609/aaai.v34i04.5960. Epub 2020 Apr 3.
3
4
Progressive Wasserstein Barycenters of Persistence Diagrams.持久图的渐进瓦瑟斯坦重心
IEEE Trans Vis Comput Graph. 2019 Aug 12. doi: 10.1109/TVCG.2019.2934256.
5
Discrete Optimal Graph Clustering.离散最优图聚类
IEEE Trans Cybern. 2020 Apr;50(4):1697-1710. doi: 10.1109/TCYB.2018.2881539. Epub 2018 Dec 7.

引用本文的文献

2
Topological state-space estimation of functional human brain networks.功能人脑网络的拓扑状态空间估计。
PLoS Comput Biol. 2024 May 13;20(5):e1011869. doi: 10.1371/journal.pcbi.1011869. eCollection 2024 May.
4
Hodge Laplacian of Brain Networks.脑网络的 Hodge Laplacian。
IEEE Trans Med Imaging. 2023 May;42(5):1563-1573. doi: 10.1109/TMI.2022.3233876. Epub 2023 May 2.
5
Topological data analysis of human brain networks through order statistics.基于有序统计的人类脑网络拓扑数据分析。
PLoS One. 2023 Mar 13;18(3):e0276419. doi: 10.1371/journal.pone.0276419. eCollection 2023.
6
Regularized Wasserstein Means for Aligning Distributional Data.用于对齐分布数据的正则化瓦瑟斯坦均值
Proc AAAI Conf Artif Intell. 2020;34(4):5166-5173. doi: 10.1609/aaai.v34i04.5960. Epub 2020 Apr 3.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验