Mi Liang, Zhang Wen, Gu Xianfeng, Wang Yalin
Arizona State University, Tempe, USA.
Stony Brook University, Stony Brook, USA.
Comput Vis ECCV. 2018 Sep;11219:336-352. doi: 10.1007/978-3-030-01267-0_20. Epub 2018 Oct 7.
We propose a new clustering method based on optimal transportation. We discuss the connection between optimal transportation and k-means clustering, solve optimal transportation with the variational principle, and investigate the use of power diagrams as transportation plans for aggregating arbitrary domains into a fixed number of clusters. We drive cluster centroids through the target domain while maintaining the minimum clustering energy by adjusting the power diagram. Thus, we simultaneously pursue clustering and the Wasserstein distance between the centroids and the target domain, resulting in a measure-preserving mapping. We demonstrate the use of our method in domain adaptation, remeshing, and learning representations on synthetic and real data.
我们提出了一种基于最优传输的新聚类方法。我们讨论了最优传输与k均值聚类之间的联系,用变分原理求解最优传输,并研究了使用幂图作为传输计划,将任意域聚合成固定数量的簇。我们在目标域中驱动聚类中心,同时通过调整幂图来保持最小聚类能量。因此,我们同时追求聚类以及聚类中心与目标域之间的瓦瑟斯坦距离,从而得到一个测度保持映射。我们展示了我们的方法在域适应、重新网格化以及在合成数据和真实数据上学习表示方面的应用。