School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA.
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA.
Neuroinformatics. 2020 Oct;18(4):531-548. doi: 10.1007/s12021-020-09459-7.
Changes in cognitive performance due to neurodegenerative diseases such as Alzheimer's disease (AD) are closely correlated to the brain structure alteration. A univariate and personalized neurodegenerative biomarker with strong statistical power based on magnetic resonance imaging (MRI) will benefit clinical diagnosis and prognosis of neurodegenerative diseases. However, few biomarkers of this type have been developed, especially those that are robust to image noise and applicable to clinical analyses. In this paper, we introduce a variational framework to compute optimal transportation (OT) on brain structural MRI volumes and develop a univariate neuroimaging index based on OT to quantify neurodegenerative alterations. Specifically, we compute the OT from each image to a template and measure the Wasserstein distance between them. The obtained Wasserstein distance, Wasserstein Index (WI) for short to specify the distance to a template, is concise, informative and robust to random noise. Comparing to the popular linear programming-based OT computation method, our framework makes use of Newton's method, which makes it possible to compute WI in large-scale datasets. Experimental results, on 314 subjects (140 Aβ + AD and 174 Aβ- normal controls) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset, provide preliminary evidence that the proposed WI is correlated with a clinical cognitive measure (the Mini-Mental State Examination (MMSE) score), and it is able to identify group difference and achieve a good classification accuracy, outperforming two other popular univariate indices including hippocampal volume and entorhinal cortex thickness. The current pilot work suggests the application of WI as a potential univariate neurodegenerative biomarker.
由于阿尔茨海默病(AD)等神经退行性疾病导致的认知表现的变化与大脑结构改变密切相关。基于磁共振成像(MRI)的具有强大统计能力的单变量和个性化神经退行性生物标志物将有益于神经退行性疾病的临床诊断和预后。然而,此类生物标志物很少被开发出来,尤其是那些对图像噪声具有鲁棒性且适用于临床分析的生物标志物。在本文中,我们引入了一种变分框架来计算大脑结构 MRI 体积上的最优传输(OT),并开发了一种基于 OT 的单变量神经影像学指数来量化神经退行性改变。具体来说,我们将每个图像的 OT 计算到模板上,并测量它们之间的 Wasserstein 距离。所获得的 Wasserstein 距离,简称 Wasserstein 指数(WI)以指定与模板的距离,简洁、信息量丰富且对随机噪声具有鲁棒性。与流行的基于线性规划的 OT 计算方法相比,我们的框架利用牛顿法,使得在大规模数据集上计算 WI 成为可能。在来自阿尔茨海默病神经影像学倡议(ADNI)基线数据集的 314 名受试者(140 名 Aβ+AD 和 174 名 Aβ-正常对照)的实验结果提供了初步证据,表明所提出的 WI 与临床认知测量(简易精神状态检查(MMSE)评分)相关,并且能够识别组间差异并实现良好的分类准确性,优于包括海马体积和内嗅皮层厚度在内的另外两个流行的单变量指数。目前的初步研究结果表明,WI 可作为一种潜在的单变量神经退行性生物标志物。