Suppr超能文献

利用 Wasserstein 距离对颞叶癫痫的脑网络进行统一的拓扑推断。

Unified topological inference for brain networks in temporal lobe epilepsy using the Wasserstein distance.

机构信息

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA.

Department of Neurology, University of Wisconsin-Madison, USA.

出版信息

Neuroimage. 2023 Dec 15;284:120436. doi: 10.1016/j.neuroimage.2023.120436. Epub 2023 Nov 4.

Abstract

Persistent homology offers a powerful tool for extracting hidden topological signals from brain networks. It captures the evolution of topological structures across multiple scales, known as filtrations, thereby revealing topological features that persist over these scales. These features are summarized in persistence diagrams, and their dissimilarity is quantified using the Wasserstein distance. However, the Wasserstein distance does not follow a known distribution, posing challenges for the application of existing parametric statistical models. To tackle this issue, we introduce a unified topological inference framework centered on the Wasserstein distance. Our approach has no explicit model and distributional assumptions. The inference is performed in a completely data driven fashion. We apply this method to resting-state functional magnetic resonance images (rs-fMRI) of temporal lobe epilepsy patients collected from two different sites: the University of Wisconsin-Madison and the Medical College of Wisconsin. Importantly, our topological method is robust to variations due to sex and image acquisition, obviating the need to account for these variables as nuisance covariates. We successfully localize the brain regions that contribute the most to topological differences. A MATLAB package used for all analyses in this study is available at https://github.com/laplcebeltrami/PH-STAT.

摘要

持久同调为从脑网络中提取隐藏拓扑信号提供了强大的工具。它捕获了跨越多个尺度的拓扑结构的演变,称为滤子,从而揭示了在这些尺度上持续存在的拓扑特征。这些特征在持久图中进行总结,并使用 Wasserstein 距离来量化它们的相似性。然而,Wasserstein 距离不遵循已知的分布,这给现有参数统计模型的应用带来了挑战。为了解决这个问题,我们引入了一个以 Wasserstein 距离为中心的统一拓扑推断框架。我们的方法没有显式的模型和分布假设。推断是完全数据驱动的。我们将这种方法应用于从两个不同地点收集的颞叶癫痫患者的静息状态功能磁共振成像(rs-fMRI):威斯康星大学麦迪逊分校和威斯康星医学院。重要的是,我们的拓扑方法对由于性别和图像采集而导致的变化具有鲁棒性,无需将这些变量作为干扰协变量进行考虑。我们成功地定位了对拓扑差异贡献最大的大脑区域。本研究中使用的所有分析的 MATLAB 包可在 https://github.com/laplcebeltrami/PH-STAT 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/11074922/432487335bae/nihms-1964373-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验