Suppr超能文献

添加-缺失锌、铜和硼纳米和体相氧化物颗粒可显示大豆对微量元素暴露的元素和粒径特异性响应。

Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure.

机构信息

International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States.

International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States.

出版信息

Sci Total Environ. 2019 May 15;665:606-616. doi: 10.1016/j.scitotenv.2019.02.142. Epub 2019 Feb 11.

Abstract

Plant response to microelements exposure can be modulated based on particle size. However, studies are lacking on the roles of particle size and specific microelements in mixed exposure systems designed for plant nutrition, rather than toxicology. Here, an addition-omission strategy was used to address particle-size and element-specific effects in soybean exposed to a mixture of nano and bulk scale oxide particles of Zn (2 mg Zn/kg), Cu (1 mg Cu/kg) and B (1 mg B/kg) in soil. Compared to the control, mixtures of oxide particles of both sizes significantly (p < 0.05) promoted grain yield and overall (shoot and grain) Zn accumulation, but suppressed overall P accumulation. However, the mixed nano-oxides, but not the mixed bulk-oxides, specifically stimulated shoot growth (47%), flower formation (63%), shoot biomass (34%), and shoot N (53%) and K (42%) accumulation. Compared by particle size, omission of individual elements from the mixtures evoked significant responses that were nano or bulk-specific, including shoot growth promotion (29%) by bulk-B; inhibition (51%) of flower formation by nano-Cu; stimulation (57%) of flower formation by bulk-B; grain yield suppression (40%) by nano-Zn; B uptake enhancement (34%) by bulk-Cu; P uptake stimulation by nano-Zn (14%) or bulk-B (21%); residual soil N (80%) and Zn (42%) enhancement by nano-Cu; and residual soil Cu enhancement by nano-Zn (72%) and nano-B (62%). Zn was responsible for driving the agronomic (biomass and grain yield) responses in this soil, with concurrent ramifications for environmental management (N and P) and human health (Zn nutrition). Overall, compared to bulk microelements, nanoscale microelements played a greater role in evoking plant responses.

摘要

植物对微量元素暴露的反应可以根据颗粒大小进行调节。然而,对于设计用于植物营养而不是毒理学的混合暴露系统中,颗粒大小和特定微量元素的作用的研究还很缺乏。在这里,采用添加-缺失策略来解决大豆暴露于土壤中纳米和块状氧化物颗粒混合物(Zn(2mg Zn/kg),Cu(1mg Cu/kg)和 B(1mg B/kg))中时的颗粒大小和元素特异性效应。与对照相比,两种尺寸的氧化物颗粒混合物均显著(p <0.05)促进了籽粒产量和整体(地上部和籽粒)Zn 积累,但抑制了整体 P 积累。然而,混合纳米氧化物,而不是混合块状氧化物,特异性地刺激了地上部生长(47%)、花形成(63%)、地上部生物量(34%)以及地上部 N(53%)和 K(42%)的积累。按颗粒大小进行比较,从混合物中单独去除个别元素会引起纳米或块状特异性的显著反应,包括块状 B 促进地上部生长(29%);纳米 Cu 抑制花形成(51%);块状 B 刺激花形成(57%);纳米 Zn 抑制籽粒产量(40%);块状 Cu 促进 B 吸收(34%);纳米 Zn 刺激 P 吸收(14%)或块状 B(21%);纳米 Cu 残留土壤 N(80%)和 Zn(42%)增加;以及纳米 Zn 和纳米 B 残留土壤 Cu 增加(分别为 72%和 62%)。Zn 负责驱动该土壤中的农艺(生物量和籽粒产量)响应,同时对环境管理(N 和 P)和人类健康(Zn 营养)产生影响。总体而言,与块状微量元素相比,纳米尺度的微量元素在引起植物反应方面发挥了更大的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验