Suppr超能文献

基于自动化图像分析的基质细胞比例作为铂耐药复发性卵巢癌的预测因子。

Stromal cell ratio based on automated image analysis as a predictor for platinum-resistant recurrent ovarian cancer.

机构信息

Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.

出版信息

BMC Cancer. 2019 Feb 18;19(1):159. doi: 10.1186/s12885-019-5343-8.

Abstract

BACKGROUND

Identifying high-risk patients for platinum resistance is critical for improving clinical management of ovarian cancer. We aimed to use automated image analysis of hematoxylin & eosin (H&E) stained sections to identify the association between microenvironmental composition and platinum-resistant recurrent ovarian cancer.

METHODS

Ninety-one patients with ovarian cancer containing the data of automated image analysis for H&E histological sections were initially reviewed.

RESULTS

Seventy-one patients with recurrent disease were finally identified. Among 30 patients with high stromal cell ratio, 60% of the patients had platinum-resistant recurrence, which was significantly higher than the rate in patients with low stromal cell ratio (9.80%, P <  0.001). Multivariate logistic regression analysis revealed elevated CA125 level after 3 cycles of chemotherapy (P <  0.001) and high stromal cell ratio (P = 0.002) were the negative predictors of platinum-resistant relapse. The area under the curve (AUC) of receiver operating characteristic (ROC) curves of the models for predicting platinum-resistant recurrence with stromal cell ratio, normalization of CA125 level, and the combination of two parameters were 0.78, 0.79, and 0.89 respectively.

CONCLUSIONS

Our results demonstrated stromal cell ratio based on automated image analysis may be a potential predictor for ovarian cancer patients at high risk of platinum-resistant recurrence, and it could improve the predictive value of model when combined with normalization of CA125 level after 3 cycles of chemotherapy.

摘要

背景

识别铂耐药的高危患者对于改善卵巢癌的临床管理至关重要。我们旨在使用苏木精和伊红(H&E)染色切片的自动图像分析来确定微环境组成与铂耐药复发性卵巢癌之间的关联。

方法

最初回顾了 91 名含有 H&E 组织学切片自动图像分析数据的卵巢癌患者。

结果

最终确定了 71 名患有复发性疾病的患者。在 30 名间质细胞比例高的患者中,60%的患者铂耐药复发,明显高于间质细胞比例低的患者(9.80%,P<0.001)。多变量逻辑回归分析显示,化疗 3 个周期后 CA125 水平升高(P<0.001)和间质细胞比例高(P=0.002)是铂耐药复发的负预测因子。基于间质细胞比例、CA125 水平正常化和两个参数组合的预测铂耐药复发的模型的受试者工作特征(ROC)曲线下面积(AUC)分别为 0.78、0.79 和 0.89。

结论

我们的结果表明,基于自动图像分析的间质细胞比例可能是铂耐药复发性卵巢癌患者的一个潜在预测因子,并且当与化疗 3 个周期后 CA125 水平正常化相结合时,可以提高模型的预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9233/6380057/e0fe0dd43c24/12885_2019_5343_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验