文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

卵巢癌中的机器学习:2004年至2024年的文献计量与可视化分析

Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024.

作者信息

Zeng Xian, Li Zude, Dai Lilin, Li Jiang, Liao Luqin, Chen Wei

机构信息

Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin, China.

Faculty of Public Administration, Guilin University of Technology, Guilin, China.

出版信息

Discov Oncol. 2025 May 13;16(1):755. doi: 10.1007/s12672-025-02416-3.


DOI:10.1007/s12672-025-02416-3
PMID:40360958
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12075065/
Abstract

OBJECTIVE: Ovarian cancer (OC) is a common malignant tumor in women, with poor prognosis and high mortality rates. Early diagnosis, screening, and prognostic prediction of OC have long been focal points and challenges in this field. In recent years, machine learning (ML) has gradually demonstrated its unique advantages in the early diagnosis, screening, and prognostic prediction of tumors, including OC.This study aims to analyze global development trends and research hotspots in the application of ML for OC, thereby providing a reference for future research directions. METHODS: We searched the Web of Science Core Collection (WoSCC) for all publications related to OC and ML from 2004 to 2024, conducting a quantitative analysis using VOSviewer, R software, and CiteSpace. RESULTS: A total of 777 articles were retrieved.The number of publications related to ML and OC has grown continuously over the past 20 years.China led with 254 articles.The most prominent journals include Gynecologic Oncology, Nature, Clinical Cancer Research, Cancer Research, and Journal of Clinical Oncology.Research hotspots are: (a) ML-driven OC biomarker discovery and personalized treatment; (b) ML in tumor microenvironment analysis and resistance prediction; (c) ML in imaging-based diagnosis and risk stratification; (d) ML in multicenter OC studies. CONCLUSION: ML in OC is currently in a developmental phase and shows promising potential for the future. This study provides researchers and clinicians with a more systematic understanding of research priorities and forthcoming developments in this area.

摘要

目的:卵巢癌(OC)是女性常见的恶性肿瘤,预后较差,死亡率高。卵巢癌的早期诊断、筛查和预后预测长期以来一直是该领域的重点和挑战。近年来,机器学习(ML)在包括卵巢癌在内的肿瘤早期诊断、筛查和预后预测中逐渐展现出独特优势。本研究旨在分析机器学习在卵巢癌应用中的全球发展趋势和研究热点,从而为未来的研究方向提供参考。 方法:我们在科学网核心合集(WoSCC)中检索了2004年至2024年所有与卵巢癌和机器学习相关的出版物,并使用VOSviewer、R软件和CiteSpace进行定量分析。 结果:共检索到777篇文章。在过去20年中,与机器学习和卵巢癌相关的出版物数量持续增长。中国以254篇文章领先。最著名的期刊包括《妇科肿瘤学》《自然》《临床癌症研究》《癌症研究》和《临床肿瘤学杂志》。研究热点包括:(a)机器学习驱动的卵巢癌生物标志物发现和个性化治疗;(b)机器学习在肿瘤微环境分析和耐药性预测中的应用;(c)机器学习在基于影像的诊断和风险分层中的应用;(d)机器学习在多中心卵巢癌研究中的应用。 结论:机器学习在卵巢癌领域目前正处于发展阶段,未来显示出有前景的潜力。本研究为研究人员和临床医生提供了对该领域研究重点和未来发展更系统的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/64fd62edc009/12672_2025_2416_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/4408ebcdb95d/12672_2025_2416_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/29447e65bcf8/12672_2025_2416_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/dd77ef981049/12672_2025_2416_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/8e5b178104ca/12672_2025_2416_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/45774363c10d/12672_2025_2416_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/3349c2cb4af1/12672_2025_2416_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/64fd62edc009/12672_2025_2416_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/4408ebcdb95d/12672_2025_2416_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/29447e65bcf8/12672_2025_2416_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/dd77ef981049/12672_2025_2416_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/8e5b178104ca/12672_2025_2416_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/45774363c10d/12672_2025_2416_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/3349c2cb4af1/12672_2025_2416_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea4/12075065/64fd62edc009/12672_2025_2416_Fig7_HTML.jpg

相似文献

[1]
Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024.

Discov Oncol. 2025-5-13

[2]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[3]
Application of medical imaging in ovarian cancer: a bibliometric analysis from 2000 to 2022.

Front Oncol. 2023-12-4

[4]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[5]
Quantitative analysis of studies that use artificial intelligence on thyroid cancer: a 20-year bibliometric analysis.

Front Oncol. 2025-3-18

[6]
Research on application of radiomics in glioma: a bibliometric and visual analysis.

Front Oncol. 2023-9-12

[7]
Global research trends in the application of artificial intelligence in oncology care: a bibliometric study.

Front Oncol. 2025-1-7

[8]
Characterization of global research trends and prospects on platinum-resistant ovarian cancer: a bibliometric analysis.

Front Oncol. 2023-6-5

[9]
Global research trends and focus on immunotherapy for endometrial cancer: a comprehensive bibliometric insight and visualization analysis (2012-2024).

Front Immunol. 2025-4-8

[10]
Study of obesity research using machine learning methods: A bibliometric and visualization analysis from 2004 to 2023.

Medicine (Baltimore). 2024-9-6

本文引用的文献

[1]
Bibliometric analysis: A few suggestions (Part Two).

Curr Probl Cardiol. 2025-3

[2]
Innovative approach towards early prediction of ovarian cancer: Machine learning- enabled XAI techniques.

Heliyon. 2024-4-15

[3]
Mapping the evolution and impact of ketogenic diet research on diabetes management: a comprehensive bibliometric analysis from 2005 to 2024.

Front Nutr. 2024-10-15

[4]
Artificial intelligence in ovarian cancer drug resistance advanced 3PM approach: subtype classification and prognostic modeling.

EPMA J. 2024-7-13

[5]
A landscape of globe research trends on minimally invasive glaucoma surgical techniques: a correspondence on bibliometrics analysis.

Int J Surg. 2024-12-1

[6]
Exploring the impact of coffee consumption on liver health: A comprehensive bibliometric analysis.

Heliyon. 2024-5-11

[7]
Artificial Intelligence in the Diagnosis of Colorectal Cancer: A Literature Review.

Diagnostics (Basel). 2024-3-1

[8]
Contrast-enhanced CT radiomics for preoperative prediction of stage in epithelial ovarian cancer: a multicenter study.

BMC Cancer. 2024-3-6

[9]
Serum Lipidome Profiling Reveals a Distinct Signature of Ovarian Cancer in Korean Women.

Cancer Epidemiol Biomarkers Prev. 2024-5-1

[10]
Multitask prediction models for serous ovarian cancer by preoperative CT image assessments based on radiomics.

Front Med (Lausanne). 2024-2-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索