Suppr超能文献

食物摄入量的组内和组间预测因子与千卡含量的关系。

Between- and Within-Subjects Predictors of the Kilocalorie Content of Bites of Food.

出版信息

J Acad Nutr Diet. 2019 Jul;119(7):1109-1117. doi: 10.1016/j.jand.2018.12.009. Epub 2019 Feb 16.

Abstract

BACKGROUND

This study builds on previous research that seeks to estimate kilocalorie intake through microstructural analysis of eating behaviors. As opposed to previous methods, which used a static, individual-based measure of kilocalories per bite, the new method incorporates time- and food-varying predictors. A measure of kilocalories per bite (KPB) was estimated using between- and within-subjects variables.

OBJECTIVE

The purpose of this study was to examine the relationship between within-subjects and between-subjects predictors and KPB, and to develop a model of KPB that improves over previous models of KPB. Within-subjects predictors included time since last bite, food item enjoyment, premeal satiety, and time in meal. Between-subjects predictors included body mass index, mouth volume, and sex.

PARTICIPANTS/SETTING: Seventy-two participants (39 female) consumed two random meals out of five possible meal options with known weights and energy densities. There were 4,051 usable bites measured.

MAIN OUTCOME MEASURES

The outcome measure of the first analysis was KPB. The outcome measure of the second analysis was meal-level kilocalorie intake, with true intake compared to three estimation methods.

STATISTICAL ANALYSES PERFORMED

Multilevel modeling was used to analyze the influence of the seven predictors of KPB. The accuracy of the model was compared to previous methods of estimating KPB using a repeated-measured analysis of variance.

RESULTS

All hypothesized relationships were significant, with slopes in the expected direction, except for body mass index and time in meal. In addition, the new model (with nonsignificant predictors removed) improved over earlier models of KPB.

CONCLUSIONS

This model offers a new direction for methods of inexpensive, accurate, and objective estimates of kilocalorie intake from bite-based measures.

摘要

背景

本研究建立在前一项研究的基础上,旨在通过对进食行为的微观结构分析来估计卡路里摄入量。与之前使用静态、基于个体的每口卡路里摄入量的方法不同,新方法纳入了随时间和食物变化的预测因子。使用个体内和个体间变量来估计每口卡路里摄入量(KPB)。

目的

本研究旨在检验个体内和个体间预测因子与 KPB 之间的关系,并开发一种 KPB 模型,该模型优于之前的 KPB 模型。个体内预测因子包括上次进食后时间、食物享受度、餐前饱腹感和用餐时间。个体间预测因子包括体重指数、口腔容积和性别。

参与者/设置:72 名参与者(39 名女性)从 5 种可能的餐选项中随机选择两种餐进行食用,这些餐的重量和能量密度已知。共测量了 4051 口可食用的食物。

主要观察指标

第一次分析的结果测量指标是 KPB。第二次分析的结果测量指标是每餐的卡路里摄入量,将实际摄入量与三种估计方法进行比较。

进行的统计分析

使用多层模型分析 KPB 的七个预测因子的影响。使用重复测量方差分析比较模型的准确性与之前估计 KPB 的方法。

结果

除体重指数和用餐时间外,所有假设的关系均具有显著意义,斜率符合预期方向。此外,新模型(去除无显著意义的预测因子)优于之前的 KPB 模型。

结论

该模型为从基于口的测量方法中提供了一种新的方法,用于进行廉价、准确和客观的卡路里摄入量估计。

相似文献

1
Between- and Within-Subjects Predictors of the Kilocalorie Content of Bites of Food.
J Acad Nutr Diet. 2019 Jul;119(7):1109-1117. doi: 10.1016/j.jand.2018.12.009. Epub 2019 Feb 16.
2
Comparison between Human and Bite-Based Methods of Estimating Caloric Intake.
J Acad Nutr Diet. 2016 Oct;116(10):1568-1577. doi: 10.1016/j.jand.2016.03.007. Epub 2016 Apr 14.
3
Effects of Bite Count Feedback from a Wearable Device and Goal Setting on Consumption in Young Adults.
J Acad Nutr Diet. 2016 Nov;116(11):1785-1793. doi: 10.1016/j.jand.2016.05.004. Epub 2016 Jun 23.
4
Effects of meal variety on expected satiation: evidence for a 'perceived volume' heuristic.
Appetite. 2015 Jun;89:10-5. doi: 10.1016/j.appet.2015.01.010. Epub 2015 Jan 16.
6
Caloric intake and eating behavior in infants and toddlers with cystic fibrosis.
Pediatrics. 2002 May;109(5):E75-5. doi: 10.1542/peds.109.5.e75.
7
Examining the utility of a bite-count-based measure of eating activity in free-living human beings.
J Acad Nutr Diet. 2014 Mar;114(3):464-469. doi: 10.1016/j.jand.2013.09.017. Epub 2013 Nov 12.
8
Slowing bite-rate reduces energy intake: an application of the bite counter device.
J Am Diet Assoc. 2011 Aug;111(8):1231-5. doi: 10.1016/j.jada.2011.05.005.
9
A comparison of bite size and BMI in a cafeteria setting.
Physiol Behav. 2017 Nov 1;181:38-42. doi: 10.1016/j.physbeh.2017.09.002. Epub 2017 Sep 8.
10
Making time for meals: meal structure and associations with dietary intake in young adults.
J Am Diet Assoc. 2009 Jan;109(1):72-9. doi: 10.1016/j.jada.2008.10.017.

引用本文的文献

1
A Systematic Review of Sensor-Based Methods for Measurement of Eating Behavior.
Sensors (Basel). 2025 May 8;25(10):2966. doi: 10.3390/s25102966.

本文引用的文献

1
A comparison of bite size and BMI in a cafeteria setting.
Physiol Behav. 2017 Nov 1;181:38-42. doi: 10.1016/j.physbeh.2017.09.002. Epub 2017 Sep 8.
2
Measuring the Consumption of Individual Solid and Liquid Bites Using a Table-Embedded Scale During Unrestricted Eating.
IEEE J Biomed Health Inform. 2017 Nov;21(6):1711-1718. doi: 10.1109/JBHI.2016.2632621. Epub 2016 Nov 24.
3
Trends in Obesity Among Adults in the United States, 2005 to 2014.
JAMA. 2016 Jun 7;315(21):2284-91. doi: 10.1001/jama.2016.6458.
4
Comparison between Human and Bite-Based Methods of Estimating Caloric Intake.
J Acad Nutr Diet. 2016 Oct;116(10):1568-1577. doi: 10.1016/j.jand.2016.03.007. Epub 2016 Apr 14.
5
Audio-based detection and evaluation of eating behavior using the smartwatch platform.
Comput Biol Med. 2015 Oct 1;65:1-9. doi: 10.1016/j.compbiomed.2015.07.013. Epub 2015 Jul 26.
6
Association between eating rate and obesity: a systematic review and meta-analysis.
Int J Obes (Lond). 2015 Nov;39(11):1589-96. doi: 10.1038/ijo.2015.96. Epub 2015 May 25.
7
Energy intake estimation from counts of chews and swallows.
Appetite. 2015 Feb;85:14-21. doi: 10.1016/j.appet.2014.11.003. Epub 2014 Nov 7.
8
Energy balance measurement: when something is not better than nothing.
Int J Obes (Lond). 2015 Jul;39(7):1109-13. doi: 10.1038/ijo.2014.199. Epub 2014 Nov 13.
9
Automatic ingestion monitor: a novel wearable device for monitoring of ingestive behavior.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1772-9. doi: 10.1109/TBME.2014.2306773.
10
Examining the utility of a bite-count-based measure of eating activity in free-living human beings.
J Acad Nutr Diet. 2014 Mar;114(3):464-469. doi: 10.1016/j.jand.2013.09.017. Epub 2013 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验