Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine University of Oxford, Oxford, OX3 9DS, UK.
Nat Commun. 2019 Feb 18;10(1):818. doi: 10.1038/s41467-019-08777-y.
Precise, analogue regulation of gene expression is critical for cellular function in mammals. In contrast, widely employed experimental and therapeutic approaches such as knock-in/out strategies are more suitable for binary control of gene activity. Here we report on a method for precise control of gene expression levels in mammalian cells using engineered microRNA response elements (MREs). First, we measure the efficacy of thousands of synthetic MRE variants under the control of an endogenous microRNA by high-throughput sequencing. Guided by this data, we establish a library of microRNA silencing-mediated fine-tuners (miSFITs) of varying strength that can be employed to precisely control the expression of user-specified genes. We apply this technology to tune the T-cell co-inhibitory receptor PD-1 and to explore how antigen expression influences T-cell activation and tumour growth. Finally, we employ CRISPR/Cas9 mediated homology directed repair to introduce miSFITs into the BRCA1 3'UTR, demonstrating that this versatile tool can be used to tune endogenous genes.
精确的、模拟的基因表达调控对哺乳动物的细胞功能至关重要。相比之下,广泛应用的实验和治疗方法,如基因敲入/敲除策略,更适合于基因活性的二元控制。在这里,我们报告了一种使用工程化 microRNA 反应元件(MREs)在哺乳动物细胞中精确控制基因表达水平的方法。首先,我们通过高通量测序测量了数千种在内源性 microRNA 控制下的合成 MRE 变体的功效。根据这些数据,我们建立了一个由不同强度的 microRNA 沉默介导微调器(miSFITs)组成的文库,这些微调器可用于精确控制用户指定基因的表达。我们将这项技术应用于调节 T 细胞共抑制受体 PD-1,并探索抗原表达如何影响 T 细胞激活和肿瘤生长。最后,我们利用 CRISPR/Cas9 介导的同源定向修复将 miSFIT 引入 BRCA1 3'UTR,证明了这种多功能工具可用于调节内源性基因。