Suppr超能文献

植物与高温胁迫

Plants and high temperature stress.

作者信息

Weis E, Berry J A

机构信息

Botanisches Institut der Universität Düsseldorf, Fed. Rep. Germany.

出版信息

Symp Soc Exp Biol. 1988;42:329-46.

PMID:3077863
Abstract

The effect of high temperature on higher plants is primarily on photosynthetic functions. The heat tolerance limit of leaves of higher plants coincides with (and appears to be determined by) the thermal sensitivity of primary photochemical reactions occurring in the thylakoid membrane system. Tolerance limits vary between genotypes, but are also subject to acclimation. Long-term acclimations can be superimposed upon fast adaptive adjustment of the thermal stability, occurring in the time range of a few hours. Light causes an increase in tolerance to heat, and this stabilization is related to the light-induced proton gradient. In addition to irreversible effects, high temperature may also cause large, reversible effects on the rate of photosynthesis. We report here some studies of photosynthetic gas exchange and chlorophyll fluorescence, designed to examine the energetic balance between photosynthetic carbon metabolism and light reactions during steady state photosynthesis with leaves of cotton plants at different temperatures. At temperatures exceeding the optimum for assimilation, but well below the tolerance limit, the feedback control of light reactions by carbon metabolism declines, as additional dissipative processes become important. Energy dissipated by photorespiration can exceed that consumed by CO2 assimilation, and a reversible, temperature-induced non-photochemical 'quenching' process, related to 'spillover' of excitation energy to photosystem 1, decreases the efficiency of photosystem 2 with increasing temperature. However, despite the overall decline in the 'potential quantum efficiency', our analysis indicates that CO2 assimilation may be limited, in part, at high temperature by an imbalance in the regulation of the carbon metabolism, which is reflected in a 'down-regulation' of the ribulose-1,5-bisphosphate carboxylase/oxygenase.

摘要

高温对高等植物的影响主要体现在光合功能上。高等植物叶片的耐热极限与类囊体膜系统中发生的初级光化学反应的热敏感性相吻合(且似乎由其决定)。耐受极限因基因型而异,但也会受到驯化的影响。长期驯化可以叠加在数小时内发生的热稳定性快速适应性调节之上。光照会导致耐热性增加,这种稳定性与光诱导的质子梯度有关。除了不可逆影响外,高温还可能对光合作用速率产生巨大的、可逆的影响。我们在此报告一些关于光合气体交换和叶绿素荧光的研究,旨在研究不同温度下棉花叶片在稳态光合作用期间光合碳代谢与光反应之间的能量平衡。在超过同化最适温度但远低于耐受极限的温度下,随着额外的耗散过程变得重要,碳代谢对光反应的反馈控制减弱。光呼吸耗散的能量可能超过二氧化碳同化消耗的能量,并且与激发能向光系统1的“溢出”相关的可逆的、温度诱导的非光化学“猝灭”过程会随着温度升高而降低光系统2的效率。然而,尽管“潜在量子效率”总体下降,但我们的分析表明,在高温下,二氧化碳同化可能部分受到碳代谢调节失衡的限制,这反映在1,5 - 二磷酸核酮糖羧化酶/加氧酶的“下调”上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验