Department of Applied Physics, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands.
QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600, GA, Delft, The Netherlands.
Adv Mater. 2019 Apr;31(14):e1808181. doi: 10.1002/adma.201808181. Epub 2019 Feb 19.
Low-dimensional high-quality InSb materials are promising candidates for next-generation quantum devices due to the high carrier mobility, low effective mass, and large g-factor of the heavy element compound InSb. Various quantum phenomena are demonstrated in InSb 2D electron gases and nanowires. A combination of the best features of these two systems (pristine nanoscale and flexible design) is desirable to realize, e.g., the multiterminal topological Josephson device. Here, controlled growth of 2D nanostructures, nanoflakes, on an InSb platform is demonstrated. An assembly of nanoflakes with various dimensions and morphologies, thinner than the Bohr radius of InSb, are fabricated. Importantly, the growth of either nanowires or nanoflakes can be enforced experimentally by setting growth and substrate design parameters properly. Hall bar measurements on the nanostructures yield mobilities up to ≈20 000 cm V s and detect quantum Hall plateaus. This allows to see the system as a viable nanoscale 2D platform for future quantum devices.
低维高质量的 InSb 材料由于其重元素化合物 InSb 的高载流子迁移率、低有效质量和大 g 因子,是下一代量子器件的有前途的候选材料。各种量子现象已在 InSb 二维电子气和纳米线中得到证实。结合这两个系统(原始纳米级和灵活设计)的最佳特性是可取的,例如,多端拓扑约瑟夫森器件。在这里,证明了在 InSb 平台上生长二维纳米结构、纳米薄片。制备了具有各种尺寸和形貌的纳米薄片的组装体,其厚度小于 InSb 的玻尔半径。重要的是,通过适当设置生长和衬底设计参数,可以在实验中强制生长纳米线或纳米薄片。对纳米结构的霍尔棒测量得到高达约 20000 cm V s 的迁移率,并检测到量子霍尔平台。这使得该系统成为未来量子器件的可行纳米级二维平台。