Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy , Shanghai Jiao Tong University , Shanghai 200240 , China.
Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , China.
Nano Lett. 2019 Mar 13;19(3):1982-1989. doi: 10.1021/acs.nanolett.8b05166. Epub 2019 Feb 20.
Strain plays an important role in condensed matter physics and materials science because it can strongly modify the mechanical, electrical, and optical properties of a material and even induce a structural phase transition. Strain effects are especially interesting in atomically thin two-dimensional (2D) materials, where unusually large strain can be achieved without breaking them. Measuring the strain distribution in 2D materials at the nanometer scale is therefore greatly important but is extremely challenging experimentally. Here, we use near-field infrared nanoscopy to demonstrate phonon polariton-assisted mapping and quantitative analysis of strain in atomically thin polar crystals of hexagonal boron nitride (hBN) at the nanoscale. A local strain as low as 0.01% can be detected using this method with ∼20 nm spatial resolution. Such ultrasensitive nanoscale strain imaging and analysis technique opens up opportunities for exploring unique local strain structures and strain-related physics in 2D materials. In addition, experimental evidence for local strain-induced phonon polariton reflection is also provided, which offers a new approach to manipulate light at deep subwavelength scales for nanophotonic devices.
应变在凝聚态物理和材料科学中起着重要作用,因为它可以强烈地改变材料的机械、电学和光学性能,甚至诱导结构相变。应变效应在原子层薄的二维(2D)材料中特别有趣,因为在不破坏它们的情况下,可以实现非常大的应变。因此,在纳米尺度上测量 2D 材料中的应变分布非常重要,但实验上极具挑战性。在这里,我们使用近场红外纳米显微镜演示了在原子层薄的六方氮化硼(hBN)的极性晶体中,利用声子极化激元辅助的mapping 和定量分析纳米尺度应变的方法。这种方法具有约 20nm 的空间分辨率,可以检测低至 0.01%的局部应变。这种超灵敏的纳米尺度应变成像和分析技术为探索 2D 材料中的独特局部应变结构和应变相关物理提供了机会。此外,还提供了局部应变诱导声子极化激元反射的实验证据,这为在深亚波长尺度上操纵光以用于纳米光子器件提供了一种新方法。