Center for Nanoscale Science and Technology , National Institute of Standards and Technology , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States.
Maryland Nanocenter , University of Maryland , College Park , Maryland 20742 , United States.
Nano Lett. 2018 Mar 14;18(3):1628-1636. doi: 10.1021/acs.nanolett.7b04476. Epub 2018 Feb 21.
The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.
六方氮化硼(hBN)的固有晶体各向异性提供了支持双曲声子极化激元的能力,即极化激元可以在材料体积内以非常大的波矢传播,从而能够将光限制在极小的尺寸内。事实上,先前的研究表明,具有深次衍射尺寸的纳米截断纳米角 hBN 腔支持在中红外范围内的三维限制光学模式。由于光学选择规则,通过远场反射和散射型近场光学显微镜(s-SNOM)仅观察到了许多理论预测模式中的少数几种。光热诱导共振(PTIR)技术通过原子力显微镜(AFM)探针探测光和振动共振,利用探针来转换由光吸收引起的局部样品膨胀,克服了弱远场发射,从而对光学和振动共振进行探测。在这里,我们表明 PTIR 能够直接观察到以前未观察到的 hBN 纳米结构的暗双曲模式。利用这些光学模式及其广泛的角动量和径向动量,可以为纳米光子应用中的电磁场近场集中、偏振提供新的控制程度。