Rivera Nicholas, Christensen Thomas, Narang Prineha
John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02139 , United States.
Department of Physics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
Nano Lett. 2019 Apr 10;19(4):2653-2660. doi: 10.1021/acs.nanolett.9b00518. Epub 2019 Apr 1.
Extreme confinement of electromagnetic energy by phonon polaritons holds the promise of strong and new forms of control over the dynamics of matter. To bring such control to the atomic-scale limit, it is important to consider phonon polaritons in two-dimensional (2D) systems. Recent studies have pointed out that in 2D, splitting between longitudinal and transverse optical (LO and TO) phonons is absent at the Γ point, even for polar materials. Does this lack of LO-TO splitting imply the absence of a phonon polariton in polar monolayers? To answer this, we connect the microscopic phonon properties with the macroscopic electromagnetic response. Specifically, we derive a first-principles expression for the conductivity of a polar monolayer specified by the wave-vector-dependent LO and TO phonon dispersions. In the long-wavelength (local) limit, we find a universal form for the conductivity in terms of the LO phonon frequency at the Γ point, its lifetime, and the group velocity of the LO phonon. Our analysis reveals that the phonon polariton of 2D is simply the LO phonon of the 2D system. For the specific example of hexagonal boron nitride (hBN), we estimate the confinement and propagation losses of the LO phonons, finding that high confinement and reasonable propagation quality factors coincide in regions that may be difficult to detect with current near-field optical microscopy techniques. Finally, we study the interaction of external emitters with 2D hBN nanostructures, finding an extreme enhancement of spontaneous emission due to coupling with localized 2D phonon polaritons and the possibility of multimode strong and ultrastrong coupling between an external emitter and hBN phonons. This may lead to the design of new hybrid states of electrons and phonons based on strong coupling.
声子极化激元对电磁能的极端限制有望实现对物质动力学的强大且全新的控制形式。为了将这种控制推向原子尺度极限,考虑二维(2D)系统中的声子极化激元很重要。最近的研究指出,在二维中,即使对于极性材料,在Γ点纵向和横向光学(LO和TO)声子之间也不存在分裂。这种LO - TO分裂的缺失是否意味着极性单层中不存在声子极化激元呢?为了回答这个问题,我们将微观声子特性与宏观电磁响应联系起来。具体而言,我们推导了由波矢依赖的LO和TO声子色散所指定的极性单层电导率的第一性原理表达式。在长波长(局部)极限下,我们找到了一个以Γ点处的LO声子频率、其寿命以及LO声子的群速度表示的电导率通用形式。我们的分析表明,二维声子极化激元就是二维系统的LO声子。对于六方氮化硼(hBN)的具体例子;我们估计了LO声子的限制和传播损耗,发现高限制和合理的传播品质因数在当前近场光学显微镜技术可能难以检测到的区域中是一致的。最后,我们研究了外部发射器与二维hBN纳米结构的相互作用,发现由于与局域二维声子极化激元耦合导致自发发射的极端增强,以及外部发射器与hBN声子之间多模强耦合和超强耦合的可能性。这可能会促成基于强耦合的新型电子 - 声子混合态的设计。