Latt Jonas, Coreixas Christophe, Beny Joël, Parmigiani Andrea
Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland.
FlowKit-Numeca Group Ltd, Route d'Oron 2, 1010 Lausanne, Switzerland.
Philos Trans A Math Phys Eng Sci. 2020 Jul 10;378(2175):20190559. doi: 10.1098/rsta.2019.0559. Epub 2020 Jun 22.
A double-distribution-function based lattice Boltzmann method (DDF-LBM) is proposed for the simulation of polyatomic gases in the supersonic regime. The model relies on a numerical equilibrium that has been extensively used by discrete velocity methods since the late 1990s. Here, it is extended to reproduce an arbitrary number of moments of the Maxwell-Boltzmann distribution. These extensions to the standard 5-constraint (mass, momentum and energy) approach lead to the correct simulation of thermal, compressible flows with only 39 discrete velocities in 3D. The stability of this BGK-LBM is reinforced by relying on Knudsen-number-dependent relaxation times that are computed analytically. Hence, high Reynolds-number, supersonic flows can be simulated in an efficient and elegant manner. While the 1D Riemann problem shows the ability of the proposed approach to handle discontinuities in the zero-viscosity limit, the simulation of the supersonic flow past a NACA0012 aerofoil confirms the excellent behaviour of this model in a low-viscosity and supersonic regime. The flow past a sphere is further simulated to investigate the 3D behaviour of our model in the low-viscosity supersonic regime. The proposed model is shown to be substantially more efficient than the previous 5-moment D3Q343 DDF-LBM for both CPU and GPU architectures. It then opens up a whole new world of compressible flow applications that can be realistically tackled with a purely LB approach. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
提出了一种基于双分布函数的格子玻尔兹曼方法(DDF-LBM),用于模拟超音速区域的多原子气体。该模型依赖于一种数值平衡,自20世纪90年代末以来,离散速度方法已广泛使用这种平衡。在此,它被扩展以再现麦克斯韦-玻尔兹曼分布的任意数量的矩。这些对标准五约束(质量、动量和能量)方法的扩展使得在三维中仅用39个离散速度就能正确模拟热可压缩流。通过依赖解析计算的与克努森数相关的弛豫时间,增强了这种BGK-LBM的稳定性。因此,可以以高效且简洁的方式模拟高雷诺数超音速流。虽然一维黎曼问题展示了所提出方法在零粘性极限下处理不连续性的能力,但绕NACA0012翼型的超音速流模拟证实了该模型在低粘性和超音速区域的优异性能。进一步模拟了绕球体的流动,以研究我们的模型在低粘性超音速区域的三维行为。结果表明,对于CPU和GPU架构,所提出的模型比之前的五矩D3Q343 DDF-LBM效率大幅提高。它进而开辟了一个全新的可压缩流应用领域,这些应用可以用纯粹的格子玻尔兹曼方法实际解决。本文是主题为“流体动力学、软物质和复杂系统:最新结果和新方法”的一部分。