Suppr超能文献

大肠杆菌在受限微流控几何结构中的鞭毛推进效率。

Efficiency of the flagellar propulsion of Escherichia coli in confined microfluidic geometries.

机构信息

Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom.

出版信息

Phys Rev E. 2019 Jan;99(1-1):012408. doi: 10.1103/PhysRevE.99.012408.

Abstract

Bacterial movement in confined spaces is routinely encountered either in a natural environment or in artificial structures. Consequently, the ability to understand and predict the behavior of motile bacterial cells in confined geometries is essential to many applications, spanning from the more classical, such as the management complex microbial networks involved in diseases, biomanufacturing, mining, and environment, to the more recent, such as single cell DNA sequencing and computation with biological agents. Fortunately, the development of this understanding can be helped by the decades-long advances in semiconductor microfabrication, which allow the design and the construction of complex confining structures used as test beds for the study of bacterial motility. To this end, here we use microfabricated channels with varying sizes to study the interaction of Escherichia coli with solid confining spaces. It is shown that an optimal channel size exists for which the hydrostatic potential allows the most efficient movement of the cells. The improved understanding of how bacteria move will result in the ability to design better microfluidic structures based on their interaction with bacterial movement.

摘要

细菌在受限空间中的运动在自然环境或人工结构中经常遇到。因此,理解和预测在受限几何形状中运动细菌细胞的行为对于许多应用至关重要,从更经典的应用,如管理涉及疾病、生物制造、采矿和环境的复杂微生物网络,到最近的应用,如单细胞 DNA 测序和生物制剂计算。幸运的是,半导体微制造技术的数十年发展可以帮助我们更好地理解这一点,该技术允许设计和构建复杂的限制结构,用作研究细菌运动的试验台。为此,我们在这里使用具有不同尺寸的微加工通道来研究大肠杆菌与固体限制空间的相互作用。结果表明,存在一个最佳的通道尺寸,在该尺寸下,静压势允许细胞最有效地运动。更好地理解细菌如何运动将使我们能够根据它们与细菌运动的相互作用来设计更好的微流控结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验