Suppr超能文献

微流控限制环境中的细菌运动模式。

Patterns of bacterial motility in microfluidics-confining environments.

机构信息

Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada.

Department of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic.

出版信息

Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2013925118.

Abstract

Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (, , , , and ) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, and moved parallel to the wall and and presented a stable movement parallel to the wall but with incidental wall escape events, while exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.

摘要

了解细菌在受限微环境中的运动行为,即它们如何在可用物理空间中搜索并对刺激做出反应,对于环境、食品工业和生物医学应用都很重要。我们在不存在外部流动和浓度梯度的情况下,在具有不同程度限制和几何复杂性的微流环境中,研究了具有不同大小和鞭毛结构的五种细菌(、、、、和)的运动行为。当限制适中时,例如在只有一个限制壁的准开放空间和宽通道中,具有复杂鞭毛结构的细菌的运动行为大致遵循基于流体力学的预测,这些预测是为简单的单端鞭毛细菌开发的。具体来说,和沿壁平行运动,和沿壁稳定运动但偶尔会脱离壁面,而则频繁地在壁面堆积器和壁面逃逸器之间转换。相反,在更紧密的受限环境中,运动受到细菌与周围壁面之间的空间相互作用的控制。在中间尺度区域,流体力学和空间相互作用的影响重叠,这些机制可以在直线通道中推动细菌朝相同方向运动,从而实现细菌的平滑运动,或者它们可能是相反的(例如,在中间尺度的蜿蜒通道中),导致混乱的运动和随后的细菌捕获。该研究为用于单细胞基因组筛选、细菌捕获用于诊断或生物计算的微流控器件设计提供了方法学模板。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e470/8092623/7d718ee3c79c/pnas.2013925118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验