Jiang Tianyi, Tao Ye, Jiang Hongyuan, Liu Weiyu, Hu Yansu, Tang Dewei
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
School of Electronics and Control Engineering, Chang'an University, Xi'an 710064, China.
Micromachines (Basel). 2019 Feb 18;10(2):135. doi: 10.3390/mi10020135.
In this paper we present a novel microfluidic approach for continuous, rapid and switchable particle concentration, using induced-charge electroosmosis (ICEO) in 3D electrode layouts. Field-effect control on non-linear electroosmosis in the transverse direction greatly facilitates a selective concentration of biological yeast cells from a straight main microchannel into one of the three downstream branch channels in our microfluidic device. For the geometry configuration of 3D driving electrode plates on sidewalls and a 2D planar gate electrode strip on the channel bottom surface, we briefly describe the underlying physics of an ICEO-based particle flow-focusing method, and provide relevant simulation results to show how gate voltage amplitude can be used to guide the motion trajectory of the concentrated particle stream. With a relatively simple geometrical configuration, the proposed microfluidic device provides new possibilities to controllably concentrate micro/nanoparticles in continuous flow by using ICEO, and is suitable for a high-throughput front-end cell concentrator interfacing with various downstream biosensors.
在本文中,我们提出了一种新颖的微流控方法,用于在三维电极布局中利用感应电荷电渗(ICEO)实现连续、快速且可切换的粒子浓缩。横向对非线性电渗的场效应控制极大地促进了生物酵母细胞从直的主微通道选择性浓缩到我们微流控装置的三个下游分支通道之一中。对于侧壁上的三维驱动电极板和通道底面的二维平面栅电极条的几何配置,我们简要描述了基于ICEO的粒子流聚焦方法的基本物理原理,并提供了相关模拟结果,以展示栅极电压幅度如何用于引导浓缩粒子流的运动轨迹。所提出的微流控装置具有相对简单的几何配置,通过使用ICEO为在连续流中可控地浓缩微/纳米粒子提供了新的可能性,并且适用于与各种下游生物传感器连接的高通量前端细胞浓缩器。