Suppr超能文献

基于感应电荷电渗驱动的三维电极辅助粒子流聚焦实验研究

An Experimental Study of 3D Electrode-Facilitated Particle Traffic Flow-Focusing Driven by Induced-Charge Electroosmosis.

作者信息

Jiang Tianyi, Tao Ye, Jiang Hongyuan, Liu Weiyu, Hu Yansu, Tang Dewei

机构信息

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.

School of Electronics and Control Engineering, Chang'an University, Xi'an 710064, China.

出版信息

Micromachines (Basel). 2019 Feb 18;10(2):135. doi: 10.3390/mi10020135.

Abstract

In this paper we present a novel microfluidic approach for continuous, rapid and switchable particle concentration, using induced-charge electroosmosis (ICEO) in 3D electrode layouts. Field-effect control on non-linear electroosmosis in the transverse direction greatly facilitates a selective concentration of biological yeast cells from a straight main microchannel into one of the three downstream branch channels in our microfluidic device. For the geometry configuration of 3D driving electrode plates on sidewalls and a 2D planar gate electrode strip on the channel bottom surface, we briefly describe the underlying physics of an ICEO-based particle flow-focusing method, and provide relevant simulation results to show how gate voltage amplitude can be used to guide the motion trajectory of the concentrated particle stream. With a relatively simple geometrical configuration, the proposed microfluidic device provides new possibilities to controllably concentrate micro/nanoparticles in continuous flow by using ICEO, and is suitable for a high-throughput front-end cell concentrator interfacing with various downstream biosensors.

摘要

在本文中,我们提出了一种新颖的微流控方法,用于在三维电极布局中利用感应电荷电渗(ICEO)实现连续、快速且可切换的粒子浓缩。横向对非线性电渗的场效应控制极大地促进了生物酵母细胞从直的主微通道选择性浓缩到我们微流控装置的三个下游分支通道之一中。对于侧壁上的三维驱动电极板和通道底面的二维平面栅电极条的几何配置,我们简要描述了基于ICEO的粒子流聚焦方法的基本物理原理,并提供了相关模拟结果,以展示栅极电压幅度如何用于引导浓缩粒子流的运动轨迹。所提出的微流控装置具有相对简单的几何配置,通过使用ICEO为在连续流中可控地浓缩微/纳米粒子提供了新的可能性,并且适用于与各种下游生物传感器连接的高通量前端细胞浓缩器。

相似文献

2
Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis.
Electrophoresis. 2018 Feb;39(4):597-607. doi: 10.1002/elps.201700305. Epub 2017 Nov 29.
3
Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis.
Lab Chip. 2016 Aug 7;16(15):2803-12. doi: 10.1039/c6lc00485g. Epub 2016 Jun 29.
6
Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics.
Electrophoresis. 2021 Apr;42(7-8):939-949. doi: 10.1002/elps.202000110. Epub 2020 Aug 7.
7
Efficient nanoparticle focusing utilizing cascade AC electroosmotic flow.
Electrophoresis. 2022 Sep;43(16-17):1755-1764. doi: 10.1002/elps.202200054. Epub 2022 Jul 3.
9
A novel micromixer based on the alternating current-flow field effect transistor.
Lab Chip. 2016 Dec 20;17(1):186-197. doi: 10.1039/c6lc01346e.
10
Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.
Anal Chem. 2016 Dec 6;88(23):11791-11798. doi: 10.1021/acs.analchem.6b03413. Epub 2016 Nov 15.

引用本文的文献

1
Editorial for the Special Issue on Micro/Nano-Chip Electrokinetics, Volume III.
Micromachines (Basel). 2020 May 8;11(5):482. doi: 10.3390/mi11050482.

本文引用的文献

1
On-chip micromanipulation and assembly of colloidal particles by electric fields.
Soft Matter. 2006 Aug 16;2(9):738-750. doi: 10.1039/b605052b.
2
Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
Electrophoresis. 2015 Aug;36(15):1744-53. doi: 10.1002/elps.201400565. Epub 2015 Jun 24.
3
Induced-charge electroosmotic trapping of particles.
Lab Chip. 2015 May 21;15(10):2181-91. doi: 10.1039/c5lc00058k.
5
Chaotic induced-charge electro-osmosis.
Phys Rev Lett. 2014 Mar 28;112(12):128302. doi: 10.1103/PhysRevLett.112.128302. Epub 2014 Mar 24.
6
Electro-orientation and electrorotation of metal nanowires.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):063018. doi: 10.1103/PhysRevE.88.063018. Epub 2013 Dec 27.
7
Tunable nanowire patterning using standing surface acoustic waves.
ACS Nano. 2013 Apr 23;7(4):3306-14. doi: 10.1021/nn4000034. Epub 2013 Apr 9.
8
Electrokinetic concentration, patterning, and sorting of colloids with thin film heaters.
J Colloid Interface Sci. 2013 Mar 15;394:598-603. doi: 10.1016/j.jcis.2012.11.066. Epub 2012 Dec 19.
9
Alternating current electrokinetic properties of gold-coated microspheres.
Langmuir. 2012 Oct 2;28(39):13861-70. doi: 10.1021/la302402v. Epub 2012 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验