Suppr超能文献

利用级联交流电动流动实现高效纳米粒子聚焦。

Efficient nanoparticle focusing utilizing cascade AC electroosmotic flow.

机构信息

Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan.

Water Frontier Research Center, Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan.

出版信息

Electrophoresis. 2022 Sep;43(16-17):1755-1764. doi: 10.1002/elps.202200054. Epub 2022 Jul 3.

Abstract

This study presents on-chip continuous accumulation and concentration of nanoscale samples using a cascade alternating current electroosmosis (cACEO) flow. ACEO can generate flow motion caused by ion movement due to interactions between the AC electric field and the induced charge layer on the electrode surface, with the potential to accumulate particles, especially in low-conductive liquid. However, the intrinsic particle diffusive motion, which is sensitive to particle size, is an essential element influencing accumulation efficiency. In this study, an electrode combining chevron and double-gap geometry embedded in a microfluidic channel was developed to perform efficient three-dimensional (3D) nanoparticle focusing using ACEO. The chevron electrode pattern was introduced upstream of the focusing zone to overcome particle accumulation in scattering zones near the channel sidewall. To demonstrate the efficiency of the proposed device for particle accumulation, three nanoparticle types were used: latex, metal, and biomaterial. Continuous 3D concentration of 50-nm polystyrene particles was confirmed. The concentration factor, determined based on image processing, became quite high when 50-nm gold nanoparticles were used. Moreover, nanoparticles with a 20-nm diameter were accumulated using cACEO. Finally, we used the concentrator chip to accumulate 50-nm liposome particles, confirming that the device could also successfully concentrate biomaterials.

摘要

本研究提出了一种使用级联交流电渗流(cACEO)的芯片上纳米级样品的连续积累和浓缩方法。ACEO 可以由于交流电场和电极表面感应电荷层之间的相互作用引起的离子运动产生流动运动,具有积累颗粒的潜力,特别是在低导电性液体中。然而,固有颗粒扩散运动对颗粒尺寸敏感,是影响积累效率的重要因素。在这项研究中,开发了一种结合了雪佛龙和双间隙几何形状的电极,并将其嵌入微流道中,以使用 ACEO 实现高效的三维(3D)纳米颗粒聚焦。在聚焦区域的上游引入了雪佛龙电极图案,以克服在通道侧壁附近的散射区域中颗粒的积累。为了证明该设备在颗粒积累方面的效率,使用了三种纳米颗粒类型:乳胶、金属和生物材料。证实了 50nm 聚苯乙烯颗粒的连续 3D 浓缩。基于图像处理确定的浓缩因子在使用 50nm 金纳米颗粒时变得相当高。此外,使用 cACEO 积累了 20nm 直径的纳米颗粒。最后,我们使用浓缩器芯片来浓缩 50nm 的脂质体颗粒,证实该设备也可以成功浓缩生物材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验