Tao Ye, Liu Weiyu, Song Chunlei, Ge Zhenyou, Li Zhaokai, Li Yanbo, Ren Yukun
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, P. R. China.
School of Electronics and Control Engineering, Chang'an University, Xi'an, P. R. China.
Electrophoresis. 2022 Nov;43(21-22):2074-2092. doi: 10.1002/elps.202200146. Epub 2022 Sep 14.
We introduce herein an effective way for continuous delivery and position-switchable trapping of nanoparticles via field-effect control on hybrid electrokinetics (HEK). Flow field-effect transistor exploiting HEK delicately combines horizontal linear electroosmosis and transversal nonlinear electroosmosis of a shiftable flow stagnation line (FSL) on gate terminals under DC-biased AC forcing. The microfluidic nanoparticle concentrator proposed herein makes use of a simple device geometry, in which an individual or a series of planar metal strips serving as gate electrode (GE) are subjected to a hybrid gate voltage signal and arranged in parallel between a pair of 3D driving electrodes. On the application of a DC-biased AC electric field across channel length direction, all the GE are electrochemically polarized, and the action of imposed hybrid electric field on the multiple-frequency bipolar counterions within the composite-induced double layer generates two counter-rotating induced-charge electroosmotic (ICEO) micro-vortices on top of each GE. Symmetry breaking in ICEO flow profile occurs once the gate voltage deviates from natural floating potential of corresponding GE. The gate voltage offset not only results in an additional pump motion of working fluid for enhanced electroosmotic transport but also directly changes the location of FSL where nanoparticles are preferentially collected by field-effect HEK. Our results of field-effect control on HEK are supposed to guide an elaborate design of flexible electrokinetic frameworks embedding coplanar metal strips for a high degree of freedom analyte manipulation in modern micro-total-analytical systems.
在此,我们介绍一种通过混合电动学(HEK)上的场效应控制实现纳米颗粒连续输送和位置可切换捕获的有效方法。利用HEK的流场效应晶体管巧妙地结合了在直流偏置交流强迫下栅极端上可移动流滞止线(FSL)的水平线性电渗和横向非线性电渗。本文提出的微流控纳米颗粒浓缩器采用了简单的器件几何结构,其中作为栅电极(GE)的单个或一系列平面金属条受到混合栅极电压信号,并平行排列在一对三维驱动电极之间。在沿通道长度方向施加直流偏置交流电场时,所有GE都会发生电化学极化,并且施加的混合电场对复合感应双层内的多频双极抗衡离子的作用会在每个GE顶部产生两个反向旋转的感应电荷电渗(ICEO)微涡旋。一旦栅极电压偏离相应GE的自然浮动电位,ICEO流型就会出现对称性破缺。栅极电压偏移不仅会导致工作流体产生额外的泵浦运动以增强电渗传输,还会直接改变FSL的位置,在该位置纳米颗粒通过场效应HEK被优先收集。我们对HEK的场效应控制结果有望指导嵌入共面金属条的灵活电动框架的精心设计,以便在现代微全分析系统中实现高度自由的分析物操纵。